
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 16: Clock Skew, 
Asynchronous Inputs, Registers

Last Lecture
Timing Methodology 
Sequential Verilog

Today
Clock Skew 
Asynchronous Inputs
Registers

Administrivia

IN

CLK

Q0 Q1D Q D Q

IN
Q0
Q1

CLK

Cascading flip-flops
Example: Shift registers

First FF acquires IN at rising clock edge
Second FF acquires Q0 at rising clock edge

>>

Unlike this figure, draw 
your clock at the top of 

the timing diagram

Cascading flip-flops (con’t)
Flip-flop propagation delays exceed hold times

Second stage latches its input before input changes

In

Q0

Q1

Clk

tsu

tphl

th

tsu

th

tplh



Clock skew
Goal: Clock all flip-flops at the same time

Difficult to achieve in high-speed systems 
Clock delays (wire, buffers) are comparable to 
logic delays

Problem is called clock skew

Original state: IN = 0, Q0 = 1, Q1 = 1
Next state: Q0 = 0, Q1 = 0 (should be Q1 = 1)

CLK0 clocks first f/f
CLK1 clocks second f/f
CLK1 should align with
CLK0, but is delayed 
due to clock skew

IN
Q0
Q1

CLK0
CLK1

Synchronizer failure
Occurs when FF input changes near clock edge

Input is neither 1 or 0 when clock goes high
Output may be neither 0 or 1

May stay undefined for a long time
Undefined state is called metastability

logic 0 logic 1

D

CLK

Q

Minimizing synchronizer failures
Failure probability can never be 0

Can make it small
Cascade two (or more) flip-flops 

Effectively synchronizes twice
Both would have to fail for system to fail

D DQasynchronous
input

synchronized
input

Clk

Q

Handling asynchronous inputs
Never fan-out asynchronous inputs

Synchronize at circuit boundary
Fan-out synchronized signal

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input D Q

Synchronizer



Registers
Collection of flip-flops with common control

Store related values (e.g. a binary word)
Share clock, reset, and set lines
Examples

Storage registers, shift registers, counters

R S R S R S
D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R S

"0"

Example:
A 4-bit
storage
register

Shift registers

Hold successively sampled input values
Delays values in time
Example: 4-bit shift register

Stores 4 input values in sequence

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Shift-register applications
Parallel-to-serial conversion for signal transmission

Pattern recognition (circuit recognizes 1001)

D Q D Q D Q D QIN

CLK

OUT

parallel inputs

parallel outputs
serial transmission

CLK CLK

clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal shift register
Holds 4 values

serial or parallel inputs
serial or parallel outputs
permits shift left or right
shift in new values from left or right



Nth cell

D
Q

CLK

Q[N-1]
(left)

Q[N+1]
(right)

Input[N]

to N-1th 
cell

to N+1th 
cell

clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Design of universal shift register
Consider one of the four flip-flops

new value at next clock cycle:

s0 and s1
control mux0 1 2 3

CLEAR

parallel inputs

parallel outputs

serial transmission

Shift register application
Parallel-to-serial conversion for serial transmission

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Pattern recognizer
Combinational function of input samples

in this case, recognizing the pattern 1001 on the 
single input signal

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counters
Sequences through a fixed set of patterns

in this case, 1000, 0100, 0010, 0001
if one of the patterns is its initial state (by loading or 
set/reset)



Activity
How does this counter work?

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

Known as Mobius (or Johnson) counter

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

Binary counter
Logic between registers (not just multiplexer)

XOR decides when bit should be toggled
always for low-order bit,
only when first bit is true for second bit,
and so on

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits 
are incremented

Four-bit binary synchronous 
up-counter

Standard component with many applications
positive edge-triggered FFs w/ synchronous load and 
clear inputs
parallel load data from D, C, B, A
enable inputs: must be asserted to enable counting
RCO: ripple-carry out used for cascading counters

high when counter is in its highest state 1111
implemented using an AND gate

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

"1"

"0"
"0"
"0"
"0"

"0"

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

"1"

"0"
"1"
"1"
"0"

Offset counters

Starting offset counters – use of synchronous load
e.g., 0110, 0111, 1000, 1001,
1010, 1011, 1100, 1101, 1111, 0110, . . .

Ending offset counter – comparator for ending value
e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

Combinations of the above (start and stop value)


