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Lecture 16: Clock Skew, 
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Cascading flip-flops
Example: Shift registers

First FF acquires IN at rising clock edge
Second FF acquires Q0 at rising clock edge
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Unlike this figure, draw 
your clock at the top of 

the timing diagram

Cascading flip-flops (con’t)
Flip-flop propagation delays exceed hold times

Second stage latches its input before input changes
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Clock skew
Goal: Clock all flip-flops at the same time

Difficult to achieve in high-speed systems 
Clock delays (wire, buffers) are comparable to 
logic delays

Problem is called clock skew

Original state: IN = 0, Q0 = 1, Q1 = 1
Next state: Q0 = 0, Q1 = 0 (should be Q1 = 1)

CLK0 clocks first f/f
CLK1 clocks second f/f
CLK1 should align with
CLK0, but is delayed 
due to clock skew

IN
Q0
Q1

CLK0
CLK1

Synchronizer failure
Occurs when FF input changes near clock edge

Input is neither 1 or 0 when clock goes high
Output may be neither 0 or 1

May stay undefined for a long time
Undefined state is called metastability

logic 0 logic 1
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Minimizing synchronizer failures
Failure probability can never be 0

Can make it small
Cascade two (or more) flip-flops 

Effectively synchronizes twice
Both would have to fail for system to fail
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Handling asynchronous inputs
Never fan-out asynchronous inputs

Synchronize at circuit boundary
Fan-out synchronized signal
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Registers
Collection of flip-flops with common control

Store related values (e.g. a binary word)
Share clock, reset, and set lines
Examples

Storage registers, shift registers, counters
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Shift registers

Hold successively sampled input values
Delays values in time
Example: 4-bit shift register

Stores 4 input values in sequence
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Shift-register applications
Parallel-to-serial conversion for signal transmission

Pattern recognition (circuit recognizes 1001)
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parallel inputs

parallel outputs
serial transmission
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clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input
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Universal shift register
Holds 4 values

serial or parallel inputs
serial or parallel outputs
permits shift left or right
shift in new values from left or right
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clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Design of universal shift register
Consider one of the four flip-flops

new value at next clock cycle:

s0 and s1
control mux0 1 2 3

CLEAR

parallel inputs

parallel outputs

serial transmission

Shift register application
Parallel-to-serial conversion for serial transmission
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Pattern recognizer
Combinational function of input samples

in this case, recognizing the pattern 1001 on the 
single input signal
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Counters
Sequences through a fixed set of patterns

in this case, 1000, 0100, 0010, 0001
if one of the patterns is its initial state (by loading or 
set/reset)



Activity
How does this counter work?
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Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

Known as Mobius (or Johnson) counter
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Binary counter
Logic between registers (not just multiplexer)

XOR decides when bit should be toggled
always for low-order bit,
only when first bit is true for second bit,
and so on
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(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits 
are incremented

Four-bit binary synchronous 
up-counter

Standard component with many applications
positive edge-triggered FFs w/ synchronous load and 
clear inputs
parallel load data from D, C, B, A
enable inputs: must be asserted to enable counting
RCO: ripple-carry out used for cascading counters

high when counter is in its highest state 1111
implemented using an AND gate
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Offset counters

Starting offset counters – use of synchronous load
e.g., 0110, 0111, 1000, 1001,
1010, 1011, 1100, 1101, 1111, 0110, . . .

Ending offset counter – comparator for ending value
e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

Combinations of the above (start and stop value)


