CSE 370 Spring 2006
Introduction to Digital Design
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m Homework 6 due Friday

m Sequential circuits
B primitive sequential elements
B combinational logic
B Models for representing sequential circuits
E finite-state machines (Moore and Mealy)
m Basic sequential circuits revisited
E shift registers
E counters
m Design procedure
E state diagrams
E state transition table
F next state functions
m Hardware description languages




Abstraction of state elements

m Divide circuit into combinational logic and state

m Localize the feedback loops and make it easy to break
cycles

B Implementation of storage elements leads to various forms
of sequential logic
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Forms of sequential logic

m Asynchronous sequential logic — state changes occur
whenever state inputs change (elements may be simple
wires or delay elements)

B Synchronous sequential logic — state changes occur in
lock step across all storage elements (using a periodic
waveform - the clock)
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Finite state machine
representations

B States: determined by possible values in sequential
storage elements
m Transitions: change of state

m Clock: controls when state can change by controlling
storage elements

m Sequential logic
B sequences through a series of states
F based on sequence of values on input signals
B clock period defines elements of sequence

Example finite state machine
diagram

m Combination lock from earlier
E 5 states
E 5 self-transitions
E 6 other transitions between states
E 1 reset transition (from all states) to state S1
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Can any sequential system be
represented with a state diagram?

m Shift register oUT1 OUT2 oUT3
E input value shown ‘
on transition arcs IN DQ DQ D QR

E output values shown ¢tK
within state node

Counters are simple finite
state machines

m Counters

E proceed through well-defined sequence of states in
response to enable

B Many types of counters: binary, BCD, Gray-code
E 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110,

111, 000, ...
E 3-bit down-counter: 111, 110, 101, 100, 011, 010,
001, 000, 111, ...
001 62;9 011
@ 3-bit up-counter @
111 (gEED 101

How do we turn a state
diagram into logic?

m Counter
E 3 flip-flops to hold state
E logic to compute next state
E clock signal controls when flip-flop memory can change
F wait long enough for combinational logic to compute new
value

E don't wait too long as that is low performance
OuT1 ouT2 OuUT3
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FSM design procedure

B Start with counters
F simple because output is just state
B simple because no choice of next state based on input

B State diagram to state transition table
F tabular form of state diagram
F like a truth-table
m State encoding
E decide on representation of states
B for counters it is simple: just its value
m Implementation
k flip-flop for each state bit
E combinational logic based on encoding




FSM design procedure: state
diagram to encoded state
transition table

m Tabular form of state diagram

m Like a truth-table (specify output for all input
combinations)

m Encoding of states: easy for counters — just use value

current state next state
0 | 000 001 | 1
1| 001 010 | 2
2 | 010 011 | 3
@ 3| 011 100 | 4
4 | 100 101 | 5
5| 101 110 | 6
6 | 110 111 | 7
7 1 111 000 | O

Implementation

m D flip-flop for each state bit
. . . . Verilog notation to show
m Combinational logic based on encoding  function represents an

input to D-FF

C3 C2 C1|N3 N2 N1
0 0 0 |0 0 1
0 0 1|0 1 o0 N1 <=C1’
o 1 o0 lo 1 1 N2 <= C1C2' + C1'C2

<= C1 xor C2
0 1 141 00 N3 <= C1C2C3' + C1'C3 + C2'C3
1 0 0 (1 0 1 <= (C1C2)C3' + (CL' + C2)C3
10 1)1 1 0 <= (C1C2)C3' + (C1C2)'C3
1 1 0 |1 1 1 <= (C1C2) xor C3
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Back to the shift register

m Input determines next state
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More complex counter example

m Complex counter
F repeats 5 states in sequence
F not a binary number representation
m Step 1: derive the state transition diagram
E count sequence: 000, 010, 011, 101, 110

B Step 2: derive the state transition table from the state
transition diagram

Present State| Next State

C B A |]C+ B+ A+
0O 0O O01]0O 1 0
o o 11}|- - =
0 1 0]O0 1 1
0 1 11]1 O 1
i1 0 O)|- - -
1 0 1)1 1 0
1 1 0|0 O O
1 1 11- - -

note the don't care conditions that arise from the unused state codes




More complex counter
example (cont’d)

m Step 3: K-maps for next state functions

C+ C B+ C A+ C
oo o] x (1]] 1]] o |T 0 [T] 0| x
Alx | 1| x] 1] Al x| o x |L_ Al x w x| o
B B B
C+<=A

B+ <=B'+ AC

A+ <= BC

Self-starting counters (cont’d)

m Re-deriving state transition table from don't care
assignment

C+ C B+ C A+ C

0| o0 of o 101 0 1 0|1 0| 0
Al 1l 1 1|1 Al1]o0 0 1 AloOo ]| 1 0| 0

B B B

Present State| Next State

C B A |C+ B+ A+

0 0 O0OJ]OoO 1 o0

0 0 1

o 1 oo 1 1

0O 1 1|1 o0 1

1 0 0

1 0o 1]1 1 O

1 1 0]0O0 0 O

1 1 1

Self-starting counters

B Start-up states
B at power-up, counter may be in an unused or invalid state
B designer must guarantee that it (eventually) enters a valid
state
m Self-starting solution
B design counter so that invalid states eventually transition to
a valid state
B may limit exploitation of don't cares

implementation
on previous slide

Activity
m 2-bit up-down counter (2 inputs)
E direction: D = 0 for up, D = 1 for down
E count: C =0 for hold, C =1 for count




Activity (cont’d)

Counter/shift-register model

m Values stored in registers represent the state of the
circuit
m Combinational logic computes:
B next state
k function of current state and inputs
F outputs
E values of flip-flops

next state
logic

Current State

Inputs Next State

Outputs

General state machine model

m Values stored in registers represent the state of the circuit
m Combinational logic computes:
B next state
E function of current state and inputs
B outputs
E function of current state and inputs (Mealy machine)
B function of current state only (Moore machine)

Current State




