CSE 370 Spring 2006 Introduction to Digital Design

Lecture 17: Introduction to Finite

 State Machines

Last Lecture

- Clock Skew
- Asynchronous Inputs
- Registers

Today
■ Finite State Machines

Finite State Machines

$■$ Sequential circuits

- primitive sequential elements

E combinational logic
$■$ Models for representing sequential circuits

- finite-state machines (Moore and Mealy)
$■$ Basic sequential circuits revisited
- shift registers
- counters
- Design procedure
- state diagrams
- state transition table
- next state functions

■ Hardware description languages

Abstraction of state elements

■ Divide circuit into combinational logic and state
■ Localize the feedback loops and make it easy to break cycles

- Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

■ Asynchronous sequential logic - state changes occur whenever state inputs change (elements may be simple wires or delay elements)
■ Synchronous sequential logic - state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Example finite state machine diagram

- Combination lock from earlier
- 5 states
- 5 self-transitions
- 6 other transitions between states
$■ 1$ reset transition (from all states) to state S1

Can any sequential system be represented with a state diagram?

\square Shift register

- input value shown on transition arcs

- output values shown CL within state node

How do we turn a state diagram into logic?

- Counter
- 3 flip-flops to hold state
- logic to compute next state
- clock signal controls when flip-flop memory can change

Ewait long enough for combinational logic to compute new value

- don't wait too long as that is low performance

Counters are simple finite state machines

- Counters
- proceed through well-defined sequence of states in response to enable
$■$ Many types of counters: binary, BCD, Gray-code
- 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
E 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

FSM design procedure

■ Start with counters
E simple because output is just state
E simple because no choice of next state based on input

■ State diagram to state transition table

- tabular form of state diagram
- like a truth-table
- State encoding
- decide on representation of states
- for counters it is simple: just its value
- Implementation
- flip-flop for each state bit
- combinational logic based on encoding

FSM design procedure: state diagram to encoded state transition table

- Tabular form of state diagram

■ Like a truth-table (specify output for all input combinations)
\square Encoding of states: easy for counters - just use value

Implementation

■ D flip-flop for each state bit
■ Combinational logic based on encoding
Verilog notation to show function represents an input to D-FF

C3	C 2	C 1	N 3	N 2	N 1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$\mathrm{N} 1<\mathrm{Cl}^{\prime}$
$\mathrm{N} 2<=\mathrm{C1C2} 2^{\prime}+\mathrm{C1}{ }^{\prime} \mathrm{C} 2$
<= C1 xor C2
N3 $<=$ C1C2C3' + C1'C3 + C2'C3 $<=(\mathrm{ClC2}) \mathrm{C} 3^{\prime}+\left(\mathrm{C1} 1^{\prime}+\mathrm{C}^{\prime}\right) \mathrm{C} 3$ $<=(\mathrm{C} 1 \mathrm{C} 2) \mathrm{Cl}^{\prime}+(\mathrm{C} 1 \mathrm{C} 2)^{\prime} \mathrm{C} 3$
$<=$ (C1C2) xor C3

Back to the shift register

■ Input determines next state

More complex counter example

- Complex counter
- repeats 5 states in sequence
- not a binary number representation
- Step 1: derive the state transition diagram
- count sequence: 000, 010, 011, 101, 110

■ Step 2: derive the state transition table from the state transition diagram

More complex counter example (cont'd)

■ Step 3: K-maps for next state functions

$$
\mathrm{C}+<=\mathrm{A}
$$

$$
\mathrm{B}+<=\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}
$$

$A+<=B C^{\prime}$

Self-starting counters (cont'd)

■ Re-deriving state transition table from don't care assignment
c+

Self-starting counters

■ Start-up states
E at power-up, counter may be in an unused or invalid state
E designer must guarantee that it (eventually) enters a valid state

- Self-starting solution
- design counter so that invalid states eventually transition to a valid state
- may limit exploitation of don't cares

Activity

■ 2-bit up-down counter (2 inputs)

- direction: $\mathrm{D}=0$ for up, $\mathrm{D}=1$ for down
- count: $\mathrm{C}=0$ for hold, $\mathrm{C}=1$ for count

Activity (cont'd)

Counter/shift-register model

$■$ Values stored in registers represent the state of the circuit
■ Combinational logic computes:
E next state

- function of current state and inputs

E outputs

- values of flip-flops

Outputs

General state machine model

\square Values stored in registers represent the state of the circuit
■ Combinational logic computes:

- next state
- function of current state and inputs

E outputs

- function of current state and inputs (Mealy machine) - function of current state only (Moore machine)

