
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 17: Introduction to Finite
State Machines

Last Lecture
Clock Skew
Asynchronous Inputs
Registers

Today
Finite State Machines

Administrivia
Homework 6 due Friday

Finite State Machines
Sequential circuits

primitive sequential elements
combinational logic

Models for representing sequential circuits
finite-state machines (Moore and Mealy)

Basic sequential circuits revisited
shift registers
counters

Design procedure
state diagrams
state transition table
next state functions

Hardware description languages

Abstraction of state elements
Divide circuit into combinational logic and state
Localize the feedback loops and make it easy to break
cycles
Implementation of storage elements leads to various forms
of sequential logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

Forms of sequential logic
Asynchronous sequential logic – state changes occur
whenever state inputs change (elements may be simple
wires or delay elements)
Synchronous sequential logic – state changes occur in
lock step across all storage elements (using a periodic
waveform - the clock)

Clock

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Finite state machine
representations

States: determined by possible values in sequential
storage elements
Transitions: change of state
Clock: controls when state can change by controlling
storage elements
Sequential logic

sequences through a series of states
based on sequence of values on input signals
clock period defines elements of sequence

Example finite state machine
diagram

Combination lock from earlier
5 states
5 self-transitions
6 other transitions between states
1 reset transition (from all states) to state S1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Can any sequential system be
represented with a state diagram?

Shift register
input value shown
on transition arcs
output values shown
within state node

100 110

111

011

101010000

001

1

1

1

1

0

0

0
0

1

1

1

0

0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

010

100

110

011001

000

101111

3-bit up-counter

Counters are simple finite
state machines

Counters
proceed through well-defined sequence of states in
response to enable

Many types of counters: binary, BCD, Gray-code
3-bit up-counter: 000, 001, 010, 011, 100, 101, 110,
111, 000, ...
3-bit down-counter: 111, 110, 101, 100, 011, 010,
001, 000, 111, ...

How do we turn a state
diagram into logic?

Counter
3 flip-flops to hold state
logic to compute next state
clock signal controls when flip-flop memory can change

wait long enough for combinational logic to compute new
value
don't wait too long as that is low performance

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

FSM design procedure
Start with counters

simple because output is just state
simple because no choice of next state based on input

State diagram to state transition table
tabular form of state diagram
like a truth-table

State encoding
decide on representation of states
for counters it is simple: just its value

Implementation
flip-flop for each state bit
combinational logic based on encoding

010

100

110

011001

000

101111

3-bit up-counter

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

FSM design procedure: state
diagram to encoded state

transition table
Tabular form of state diagram
Like a truth-table (specify output for all input
combinations)
Encoding of states: easy for counters – just use value

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

N1 <= C1’
N2 <= C1C2’ + C1’C2

<= C1 xor C2
N3 <= C1C2C3’ + C1’C3 + C2’C3

<= (C1C2)C3’ + (C1’ + C2’)C3
<= (C1C2)C3’ + (C1C2)’C3
<= (C1C2) xor C3

Verilog notation to show
function represents an
input to D-FF

Implementation

D flip-flop for each state bit
Combinational logic based on encoding

0 0

0 1

1 1

0 1C1

C2

C3N3

0 1

1 0

1 0

0 1C1

C2

C3N2

1 1

0 0

1 1

0 0C1

C2

C3N1

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 <= In
N2 <= C1
N3 <= C2

Back to the shift register

Input determines next state

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

More complex counter example
Complex counter

repeats 5 states in sequence
not a binary number representation

Step 1: derive the state transition diagram
count sequence: 000, 010, 011, 101, 110

Step 2: derive the state transition table from the state
transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter
example (cont’d)

Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1A

B

CC+

1 1

X 0

0 X

X 1A

B

CB+

0 1

X 1

0 X

X 0A

B

CA+

Self-starting counters (cont’d)
Re-deriving state transition table from don't care
assignment

0 0

1 1

0 0

1 1A

B

CC+

1 1

1 0

0 1

0 1A

B

CB+

0 1

0 1

0 0

0 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100

Self-starting counters
Start-up states

at power-up, counter may be in an unused or invalid state
designer must guarantee that it (eventually) enters a valid
state

Self-starting solution
design counter so that invalid states eventually transition to
a valid state
may limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100

Activity
2-bit up-down counter (2 inputs)

direction: D = 0 for up, D = 1 for down
count: C = 0 for hold, C = 1 for count

01

00 11

10

C=0
D=X

C=0
D=X

C=0
D=X

C=0
D=X

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=1

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

Activity (cont’d)

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

N1 = C’S1
+ CDS0’S1’ + CDS0S1
+ CD’S0S1’ + CD’S0’S1

= C’S1
+ C(D’(S1 ⊕ S0) + D(S1 ≡ S0))

N0 = CS0’ + C’S00 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

D

S1

S0

C

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

D

S1

S0

C

Counter/shift-register model
Values stored in registers represent the state of the
circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

General state machine model
Values stored in registers represent the state of the circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
function of current state and inputs (Mealy machine)
function of current state only (Moore machine)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

