CSE 370 Spring 2006 Introduction to Digital Design
 Lecture 18: Moore and Mealy Machines

Last Lecture

- Finite State Machines

Today

- Moore and Mealy Machines

Counter/shift-register model

\square Values stored in registers represent the state of the circuit
■ Combinational logic computes:

- next state
- function of current state and inputs

E outputs

- values of flip-flops

Outputs

General state machine model

\square Values stored in registers represent the state of the circuit
■ Combinational logic computes:

- next state

Efunction of current state and inputs
Eoutputs
Lunction of current state and inputs (Mealy machine) - function of current state only (Moore machine)

State machine model (cont'd)

- States: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$
\square Inputs: $I_{1}, I_{2}, \ldots, I_{m}$
$■$ Outputs: $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{n}}$
■ Transition function: $\mathrm{F}_{\mathrm{s}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{l}_{\mathrm{j}}\right)$
■ Output function: $\mathrm{F}_{\mathrm{o}}\left(\mathrm{S}_{\mathrm{i}}\right)$ or $\mathrm{F}_{\mathrm{o}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{l}_{\mathrm{j}}\right)$

Next State

Comparison of Mealy and Moore machines

\square Mealy machines tend to have less states

- different outputs on arcs (n^{2}) rather than states (n)
\square Moore machines are safer to use
- outputs change at clock edge (always one cycle later)
- in Mealy machines, input change can cause output change as soon as logic is done - a big problem when two machines are interconnected - asynchronous feedback may occur if one isn't careful
■ Mealy machines react faster to inputs
- react in same cycle - don't need to wait for clock
n in Moore machines, more logic may be necessary to decode state into outputs - more gate delays after clock edge

Specifying outputs for a Moore machine

■ Output is only function of state

- specify in state bubble in state diagram

E example: sequence detector for 01 or 10
current \mid next

Comparison of Mealy and Moore machines (cont'd)

■ Moore

■ Mealy

■ Synchronous Mealy

Specifying outputs for a Mealy machine

■ Output is function of state and inputs
— specify output on transition arc between states

- example: sequence detector for 01 or 10

reset	input	current state	next state	output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	в	o
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Registered Mealy machine (really Moore)

■ Synchronous (or registered) Mealy machine

Example: vending machine

■ Release item after 15 cents are deposited

- Single coin slot for dimes, nickels
registered state AND outputs
■ No change
- easy to implement in PLDs

■ Moore machine with no output decoding

- outputs computed on transition to next state rather than after entering
- view outputs as expanded state vector

Current State

Example: vending machine (cont'd)

■ Suitable abstract representation

- tabulate typical input sequences:
m nickels
nickel, dime
- dime, nickel
ntwo dimes
- draw state diagram:

Einputs: N, D, reset
Eoutput: open chute
E assumptions:
■assume N and D asserted for one cycle

Example: vending machine (cont'd)

■ Minimize number of states - reuse states whenever possible

present state	inputs		next state	output open
	D	N		
0¢	0	0	O¢	0
	0	1	5¢	0
	1	0	10\$	0
	1	1	-	-
5¢	0	0	5¢	0
	0	1	10¢	0
	1	0	15¢	0
	1	1	-	-
10¢	0	0	10¢	0
	0	1	15¢	0
	1	0	15¢	0
	1	1	-	-
15¢	-	-	15¢	1
	mb	,	table	

Example: vending machine (cont'd)

■ Uniquely encode states

Example: vending machine (cont'd)

■ One-hot encoding

$\mathrm{D} 0=\mathrm{Q} 0 \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
$\mathrm{D} 1=\mathrm{Q} 0 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
$\mathrm{D} 2=\mathrm{Q} 0 \mathrm{D}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 2 \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
$\mathrm{D} 3=\mathrm{Q} 1 \mathrm{D}+\mathrm{Q} 2 \mathrm{D}+\mathrm{Q} 2 \mathrm{~N}+\mathrm{Q} 3$ OPEN $=$ Q3

Example: Moore implementation

■ Mapping to logic

$\mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N}$
$\mathrm{DO}=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}$
OPEN = Q1 Q0

Equivalent Mealy and Moore state diagrams

■ Moore machine
E outputs associated with state

- Mealy machine

E outputs associated with transitions

Example: Mealy implementation

Example: Mealy implementation

```
DO = QO'N + QON' + Q1N + Q1D
D1 = Q1 + D + QON
OPEN = Q1Q0 + Q1N + Q1D + Q0D
```

make sure OPEN is 0 when rese

- by adding AND gate

Vending machine: Mealy to synch. Mealy

■ OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
■ This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
$■$ OPEN.d $=(\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N})\left(\mathrm{Q} 0{ }^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}\right)$

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

Vending machine: Moore to synch. Mealy

Mealy and Moore examples

■ Recognize $A, B=0,1$

- Mealy or Moore?

HDLs and Sequential Logic

- Flip-flops
- representation of clocks - timing of state changes
- asynchronous vs. synchronous

■ FSMs
I structural view (FFs separate from combinational logic)

- behavioral view (synthesis of sequencers - not in this course)
- Data-paths = data computation (e.g., ALUs, comparators) + registers
- use of arithmetic/logical operators
- control of storage elements

Mealy and Moore examples (cont'd)

- Recognize $A, B=1,0$ then 0,1
- Mealy or Moore?

Example: reduce-1-string-by-1

■ Remove one 1 from every string of 1s on the input

Verilog FSM - Reduce 1s example

Moore Verilog FSM (cont’d)

■ Moore machine
state assignment
module reduce (clk, reset, in, out); input clk, reset, in; output out;
parameter zero
parameter $=2^{\prime}$ boo; parameter one1 = 2'b01;
reg out;
reg [2:1] state;
reg [2:1] state;
reg [2:1] next_state
// state variables
always @(posedge clk)
if (reset) state = zero;
else state = next_state; if in one place)

Mealy Verilog FSM

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;
always @(posedge clk) if (reset) state = zero; else state = next_state;
always @(in or state)
case (state)
zero:
// last input was a zero
$\underset{\text { out }}{\text { begin }}=$
out (in) ${ }^{\text {if }}$ next_state $=$ one;
else next_state = zero;
end
one:
if (in) begin
// we've seen one 1
next_state $=$ one; out $=1$;
end else begin
next_state $=$ zero; out $=0$;
end
endmodule
always @(in or state)
begin
if (in) next_state = one1;
else next state = zero
end
one1:
begin
if (in) next_state $=$ two1s;
else next_state $=$ zero:
end
two1s:
// we've seen at least 2 ones
begin
if (in) next_state = two1s;
else next_state = zero;
end
nd

Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
always @(posedge clk)
if (reset) state = zero;
else
case (state)
zero: // last input was a zero
begin $=$

$$
\begin{aligned}
& \text { out }=0 \text {; } \\
& \text { if (in) state }=\text { one; }
\end{aligned}
$$

$\begin{array}{ll}\text { if (in) } & \text { state }=\text { one; } \\ \text { else } & \text { state }=\text { zero; }\end{array}$
end
end
if (in) begin
state = one; out = 1
end else begin
state $=$ zero; out $=0$;
end
endmodule

Finite state machines summary

\square Models for representing sequential circuits

- abstraction of sequential elements
- finite state machines and their state diagrams
- inputs/outputs
- Mealy, Moore, and synchronous Mealy machines
\square Finite state machine design procedure
- deriving state diagram

E deriving state transition table

- determining next state and output functions
- implementing combinational logic
- Hardware description languages

