
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 19: More Moore and Mealy
Machines

Last Lecture
Moore and Mealy Mahcines

Today
Moore and Mealy Machines

Administrivia

HW 7 Out
Lab 7 this week
Quiz 3 graded, pick up (Average 8.74, Median 9.9)

Quiz Review
1. In this problem we want to design a three bit Grey code counter. This counter will cycle through the

following states
000,001,011,010,110,111,101,100,000,etc.

in the order listed above. Further the counter should provide a reset input (call it R) which if it is set
will return the counter to the state 000.

a) Draw a state transition diagram for this counter. Each state should be labeled by the three bits listed
above. You should label the transitions between these states with arrows labeled by the value R
takes.

b) Create and fill out a state transition table for this counter. It should have four inputs and three outputs.

Quiz Review
c) Draw a circuit which implements the counter and changes state at the positive edge of the clock.

Your circuit should have as input R and as output the bits of the counter, S1, S2, and S3. You are
allowed to use any-fan in AND and OR gates, inverters as well as

D Q Flip flop(s)

Clock

Comparison of Mealy and
Moore machines (cont’d)

Moore

Mealy

Synchronous Mealy

state feedback

inputs

outputsreg

combinational
logic for
next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

FSM design

FSM-design procedure

1. State diagram and state-transition table

2. State minimization

3. State assignment (or state encoding)

4. Minimize next-state logic

5. Implement the design

Example: Sequence detector
Design a circuit to detect 3 or more 1’s in a bit string

Assume Moore machine
Assume D flip-flops
Assume flip-flops have a reset

1. State diagram and state-
transition table

B/0

C/0

A/0

D/1

1

0

0

1

1

1

reset

0

0

current next current
reset state input state output

1 – – A 0
0 A 0 A 0
0 A 1 B 0
0 B 0 A 0
0 B 1 C 0
0 C 0 A 0
0 C 1 D 0
0 D 0 A 1
0 D 1 D 1

2. State minimization & 3.
State encoding

State diagram is already minimized
Try a binary encoding

B/0

C/0

A/0

D/1

1

0

0

1

1

1

reset

0

0

current next current
reset state input state output

1 – – 00 0
0 00 0 00 0
0 00 1 01 0
0 01 0 00 0
0 01 1 10 0
0 10 0 00 0
0 10 1 11 0
0 11 0 00 1
0 11 1 11 1

4. Minimize next-state logic

M

L

In

0 0 0 0

0 1 1 1

MSB+ M

L

In

0 0 0 0

1 0 1 1

LSB+ M

L

In

0 0 1 0

0 0 1 0

OUT+

Out+ = MLMSB+ = LIn + MIn LSB+ = L'In + MIn

Notation
M := MSB
L := LSB
In := Input

5. Implement the design

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine
Release item after 15 cents are deposited
Single coin slot for dimes, nickels
No change

Example: vending machine
(cont’d)

Suitable abstract representation
tabulate typical input sequences:

3 nickels
nickel, dime
dime, nickel
two dimes

draw state diagram:
inputs: N, D, reset
output: open chute

assumptions:
assume N and D asserted
for one cycle
each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

Example: vending machine
(cont’d)

Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Example: vending machine
(cont’d)

Uniquely encode states

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation

Mapping to logic
0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N
D

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: vending machine
(cont’d)

One-hot encoding

Equivalent Mealy and Moore
state diagrams

Moore machine
outputs associated
with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Mealy machine
outputs associated with
transitions

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N
D

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when reset
– by adding AND gate

Vending machine: Moore to synch. Mealy
OPEN = Q1Q0 creates a combinational delay after Q1 and
Q0 change in Moore implementation
This can be corrected by retiming, i.e., move flip-flops and
logic through each other to improve delay
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
Implementation now looks like a synchronous Mealy machine

it is common for programmable devices to have FF at end
of logic

Vending machine: Mealy to
synch. Mealy

OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1Open.d

Q0

N
D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open.d

Q0

N
D

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore examples

Recognize A,B = 0,1
Mealy or Moore?

B

A out

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore examples
(cont’d)

Recognize A,B = 1,0 then 0,1
Mealy or Moore?

HDLs and Sequential Logic
Flip-flops

representation of clocks - timing of state changes
asynchronous vs. synchronous

FSMs
structural view (FFs separate from combinational
logic)
behavioral view (synthesis of sequencers – not in this
course)

Data-paths = data computation (e.g., ALUs,
comparators) + registers

use of arithmetic/logical operators
control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero
[0]

one1
[0]

Moore Mealy

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;

parameter zero = 2’b00;
parameter one1 = 2’b01;
parameter two1s = 2’b10;

reg out;
reg [2:1] state; // state variables
reg [2:1] next_state;

always @(posedge clk)
if (reset) state = zero;
else state = next_state;

state assignment
(easy to change,
if in one place)

Verilog FSM - Reduce 1s
example

Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

always @(in or state)

case (state)
zero:

// last input was a zero
begin
if (in) next_state = one1;
else next_state = zero;

end
one1:

// we've seen one 1
begin
if (in) next_state = two1s;
else next_state = zero;

end
two1s:

// we've seen at least 2 ones
begin
if (in) next_state = two1s;
else next_state = zero;

end
endcase

crucial to include
all signals that are
input to state determination

Moore Verilog FSM (cont’d)

note that output
depends only on state

always @(state)
case (state)
zero: out = 0;
one1: out = 0;

two1s: out = 1;
endcase

endmodule

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;
always @(posedge clk)
if (reset) state = zero;
else state = next_state;

always @(in or state)
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) next_state = one;
else next_state = zero;

end
one: // we've seen one 1
if (in) begin

next_state = one; out = 1;
end else begin

next_state = zero; out = 0;
end

endcase
endmodule

Mealy Verilog FSM

1/00/0

0/0

1/1

zero
[0]

one1
[0]

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)
if (reset) state = zero;
else
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) state = one;
else state = zero;

end
one: // we've seen one 1
if (in) begin

state = one; out = 1;
end else begin

state = zero; out = 0;
end

endcase
endmodule

Synchronous Mealy Machine

Finite state machines summary

Models for representing sequential circuits
abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic

Hardware description languages

