
CSE 370 Spring 2006
Introduction to Digital Design
Lecture 21: Sequential Logic 

Technologies
Last Lecture

Moore and Mealy Machines

Today
Sequential logic technologies

Vending machine: Moore to synch. Mealy
OPEN = Q1Q0 creates a combinational delay after Q1 and 
Q0 change in Moore implementation
This can be corrected by retiming, i.e., move flip-flops and 
logic through each other to improve delay
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
Implementation now looks like a synchronous Mealy machine

it is common for programmable devices to have FF at end 
of logic D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore examples

Recognize A,B = 0,1
Mealy or Moore?

B

A out



D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore examples 
(cont’d)

Recognize A,B = 1,0 then 0,1
Mealy or Moore?

HDLs and Sequential Logic
Flip-flops

representation of clocks - timing of state changes
asynchronous vs. synchronous

FSMs
structural view (FFs separate from combinational logic)
behavioral view (synthesis of sequencers – not in this 
course)

Data-paths = data computation (e.g., ALUs, comparators) 
+ registers

use of arithmetic/logical operators
control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero
[0]

one1
[0]

Moore Mealy

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;

parameter zero  = 2’b00;
parameter one1  = 2’b01;
parameter two1s = 2’b10;

reg out;
reg [2:1] state; // state variables
reg [2:1] next_state;

always @(posedge clk)
if (reset) state = zero;
else       state = next_state;

state assignment
(easy to change,
if in one place)

Verilog FSM - Reduce 1s 
example

Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]



always @(in or state)

case (state)
zero:

// last input was a zero
begin
if (in) next_state = one1;
else    next_state = zero;

end
one1:

// we've seen one 1
begin
if (in) next_state = two1s;
else    next_state = zero;

end
two1s:

// we've seen at least 2 ones
begin
if (in) next_state = two1s;
else    next_state = zero;

end
endcase

crucial to include 
all signals that are 
input to state determination

Moore Verilog FSM (cont’d)

note that output 
depends only on state

always @(state)
case (state)
zero: out = 0;
one1: out = 0;

two1s: out = 1;
endcase

endmodule

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;
always @(posedge clk)
if (reset) state = zero;
else       state = next_state;

always @(in or state)
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) next_state = one;
else    next_state = zero;

end
one: // we've seen one 1
if (in) begin

next_state = one; out = 1;
end else begin

next_state = zero; out = 0;
end

endcase
endmodule

Mealy Verilog FSM

1/00/0

0/0

1/1

zero
[0]

one1
[0]

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)
if (reset) state = zero;
else 
case (state)
zero: // last input was a zero
begin
out = 0;
if (in) state = one;
else    state = zero;

end
one: // we've seen one 1
if (in) begin

state = one; out = 1;
end else begin

state = zero; out = 0;
end

endcase
endmodule

Synchronous Mealy Machine Finite state machines summary

Models for representing sequential circuits
abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic

Hardware description languages



Sequential logic implementation

Implementation
random logic gates and FFs
programmable logic devices (PAL with FFs)

Design procedure
state diagrams
state transition table
state assignment
next state functions

Median filter FSM
Remove single 0s between two 1s (output = NS3)

000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

I    PS1  PS2  PS3  NS1 NS2  NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Median filter FSM (cont’d)
Realized using the standard procedure and individual 
FFs and gates

I    PS1  PS2  PS3  NS1 NS2  NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

NS1 = Reset’ (I)
NS2 = Reset’ ( PS1 + PS2 I )
NS3 = Reset’ PS2
O = PS3

Median filter FSM (cont’d)
But it looks like a shift register if you look at it right

000

0

1

0

100

010 110

111 011001

1

1

11

1
1

0

0

0

0

0

Reset000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

101

1

0



Median filter FSM (cont’d)
An alternate implementation with S/R FFs

The set input (S) does the median filter function by 
making the next state 111 whenever the input is 1 and 
PS2 is 1 (1 input to state x1x)

R = Reset
S = PS2 In
NS1 = In
NS2 = PS1
NS3 = PS2
O = PS3Out

CLK

D Q
R S

D Q
R S

D Q
R S

In

Reset

D Q
Q

Implementation using PALs
Programmable logic building block for sequential logic

macro-cell: FF + logic
D-FF
two-level logic capability like PAL (e.g., 8 product 
terms)

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)
D1 = reset'(Q1 + D + Q0N)
OPEN = Q1Q0

Vending machine example 
(Moore PLD mapping)

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending machine (synch. Mealy 
PLD mapping)

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset



22V10 PAL
Combinational logic
elements (SoP)
Sequential logic
elements (D-FFs)
Up to 10 outputs
Up to 10 FFs
Up to 22 inputs

22V10 PAL Macro Cell
Sequential logic element + output/input selection

Light Game FSM
Tug of War game

7 LEDs, 2 push buttons (L, R)

LED
(3)

LED
(2)

LED
(1)

LED
(0)

LED
(6)

LED
(5)

LED
(4)

RESET

RR

L

R

L

R

L

R

LL

Light Game FSM Verilog
module Light_Game (LEDS, LPB, RPB, CLK, RESET);

input LPB ;
input RPB ;
input CLK ;
input RESET;
output [6:0] LEDS ;

reg [6:0] position;
reg left;
reg right;
always @(posedge CLK)

begin  
left <= LPB;
right <= RPB;
if (RESET) position <= 7'b0001000;
else if ((position == 7'b0000001) || (position == 7'b1000000)) ;
else if (L) position <= position << 1;
else if (R) position <= position >> 1; 

end
endmodule

wire L, R;
assign L = ~left && LPB;
assign R = ~right && RPB;
assign LEDS = position;

combinational logic

sequential logic



Example: traffic light controller
A busy highway is intersected by a little used farmroad
Detectors C sense the presence of cars waiting on the farmroad

with no car on farmroad, light remain green in highway direction
if vehicle on farmroad, highway lights go from Green to Yellow 
to Red, allowing the farmroad lights to become green
these stay green only as long as a farmroad car is detected but 
never longer than a set interval
when these are met, farm lights transition from Green to Yellow 
to Red, allowing highway to return to green
even if farmroad vehicles are waiting, highway gets at least a 
set interval as green

Assume you have an interval timer that generates:
a short time pulse (TS) and
a long time pulse (TL),
in response to a set (ST) signal.
TS is to be used for timing yellow lights and TL for green lights

highway

farm road

car sensors

Example: traffic light 
controller (cont’)

Highway/farm road intersection

Example: traffic light 
controller (cont’)

Tabulation of inputs and outputs
inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road  FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

Tabulation of unique states – some light configurations imply 
others

state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

Example: traffic light 
controller (cont’)

State diagram
Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY



Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green
0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem 
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: traffic light 
controller (cont’)

Generate state table with symbolic states
Consider state assignments

Logic for different state 
assignments

SA1
NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
H1 = PS1 H0 = PS1'•PS0
F1 = PS1' F0 = PS1•PS0‘

SA2
NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
H1 = PS0 H0 = PS1•PS0'
F1 = PS0' F0 = PS1•PS0

SA3
NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
H1 = PS3 + PS2 H0 = PS1
F1 = PS1 + PS0 F0 = PS3


