CSE 370 Spring 2006 Introduction to Digital Design
 Lecture 21: Sequential Logic Technologies

Last Lecture

- Moore and Mealy Machines

Today

■ Sequential logic technologies

Vending machine: Moore to synch. Mealy
■ OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation

- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N) (Q0'N + Q0N' + Q1N + Q1D $)$
= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine \square it is common for programmable devices to have FF at end of logic

Mealy and Moore examples

■ Recognize $A, B=0,1$

- Mealy or Moore?

Mealy and Moore examples (cont'd)

■ Recognize $A, B=1,0$ then 0,1

- Mealy or Moore?

Example: reduce-1-string-by-1

- Remove one 1 from every string of 1 s on the input

Mealy

HDLs and Sequential Logic

■ Flip-flops

- representation of clocks - timing of state changes
- asynchronous vs. synchronous

■ FSMs
E structural view (FFs separate from combinational logic)
■ behavioral view (synthesis of sequencers - not in this course)
■ Data-paths = data computation (e.g., ALUs, comparators)

+ registers
I use of arithmetic/logical operators
- control of storage elements

Verilog FSM - Reduce 1s example

■ Moore machine
module reduce (clk, reset, in, out), input clk, reset, in; output out;
parameter zer

parameter one1 $=2 \prime$ b01
reg out;
reg [2:1] state
reg [2:1] next_state;
always @(posedge clk)
if (reset) state = zero;
else state $=$ next_state;
state assignment if in one place)

Moore Verilog FSM (cont’d)

case (state) zero:	crucial to include all signals that are
// last input was a zero begin	input to state determination
```if (in) next_state = one1; else next_state = zero;```	
end one1:	note that output
// we've seen one 1	depends only on state
	$\downarrow$
two1s:	
// we've seen at least 2 ones	case (state)
begin   if (in) next state $=$ two1s;	zero: out $=0$;
else next_state = zero;	one1: out $=0$;   two1s: out = 1;
end	endcase
	dmodule

## Synchronous Mealy Machine

```
odule reduce (c1k, reset, in, out);
 input clk, reset, in,
 output out
 eg state; // state variable
 always @(posedge clk)
 if (reset) state = zero;
 else
 case (state)
 // last input was a zer
 begin
 out = 0;
 if (in) state = one;
 else state = zero;
 end
 one: // we've seen one 1
 state = one; out = 1;
 end else begin
 state = zero; out = 0;
 end
 endcase
endmodule
```


## Mealy Verilog FSM

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;
always @(posedge clk) if (reset) state = zero else $\quad$ state $=$ next_state $;$
always @(in or state)
case (state)
zero:
begin
// last input was a zero
begin

else $\quad$ next_state $=$ zero;
end
if (in) begin
// we've seen one 1
next_state $=$ one; out $=1$;
next_state $=$ zero; out $=0$;
end
endmodule

## Finite state machines summary

■ Models for representing sequential circuits

- abstraction of sequential elements
- finite state machines and their state diagrams
- inputs/outputs
- Mealy, Moore, and synchronous Mealy machines
$\square$ Finite state machine design procedure
E deriving state diagram
- deriving state transition table
- determining next state and output functions
- implementing combinational logic

■ Hardware description languages

## Sequential logic implementation

■ Implementation

- random logic gates and FFs
programmable logic devices (PAL with FFs)
- Design procedure
- state diagrams
- state transition table
- state assignment
- next state functions


## Median filter FSM

■ Remove single 0s between two 1s (output = NS3)

	PS1	PS2	PS3	NS1	NS2	NS3
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	$\times$	$\times$	$\times$
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	0
1	1	0	1	$X$	$X$	$\times$
1	1	1	0	1	1	1
1	1	1	1	1	1	1

## Median filter FSM (cont'd)

■ But it looks like a shift register if you look at it right


## Median filter FSM (cont’d)

■ An alternate implementation with S/R FFs

$\square$ The set input (S) does the median filter function by making the next state 111 whenever the input is 1 and PS2 is 1 (1 input to state $x 1 x$ )

## Vending machine example (Moore PLD mapping)



## Implementation using PALs

■ Programmable logic building block for sequential logic
E macro-cell: FF + logic

- D-FF

E two-level logic capability like PAL (e.g., 8 product terms)


OPEN = reset'(Q1Q0N' + Q1N + Q1D + QO'ND + Q0N'D)


## 22V10 PAL

■ Combinational logic elements (SoP)

■ Sequential logic elements (D-FFs)
■ Up to 10 outputs
■ Up to 10 FFs
■ Up to 22 inputs


## Light Game FSM

■ Tug of War game

- 7 LEDs, 2 push buttons (L, R)



## 22V10 PAL Macro Cell

$■$ Sequential logic element + output/input selection


## Light Game FSM Verilog

module Light_Game (LEDS, LPB, RPB, CLK, RESET);
input LPB ;
input RPB ;
input CLK ;
input RESET;
output [6:0] LEDS ;
combinational logic

> wire $L, R ;$
> assign $L=\sim$ left \&\& LPB; assign $R=\sim$ right \&\& RPB; assign LEDS = position;
reg [6:0] position;
reg left;
reg right;
sequential logic
always @(posedge CLK) begin
left <= LPB;
right <= RPB;
if (RESET) position <= 7'b0001000;
else if ((position == 7'b0000001) || (position == 7'b1000000)) ;
else if (L) position <= position << 1;
else if (R) position <= position >> 1;
end

## Example: traffic light controller

- A busy highway is intersected by a little used farmroad
- Detectors C sense the presence of cars waiting on the farmroad E with no car on farmroad, light remain green in highway direction
E if vehicle on farmroad, highway lights go from Green to Yellow to Red, allowing the farmroad lights to become green
- these stay green only as long as a farmroad car is detected but never longer than a set interval
E when these are met, farm lights transition from Green to Yellow to Red, allowing highway to return to green
- even if farmroad vehicles are waiting, highway gets at least a set interval as green
- Assume you have an interval timer that generates:
- a short time pulse (TS) and
- a long time pulse (TL),
n in response to a set (ST) signal.
- TS is to be used for timing yellow lights and TL for green lights


## Example: traffic light controller (cont')

■ Highway/farm road intersection

highway

## Example: traffic light controller (cont')

## Example: traffic light controller (cont')

Tabulation of inputs and outputs
others


Tabulation of unique states - some light configurations imply

[^0]
## description

assert green/yellow/red highway lights assert green/yellow/red highway lights asser timing a show/red highway light start timing a short or long interval品


## Example: traffic light controller (cont')

■ Generate state table with symbolic states


## Logic for different state assignments

- SA1
$\mathrm{NS} 1=\mathrm{C} \cdot \mathrm{TL} \cdot \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 1 \cdot \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 1 \cdot \mathrm{PSO}+\mathrm{C}^{\prime} \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0+\mathrm{TL} \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0$ NSO $=\mathrm{C} \cdot T 1 \cdot$ PS1 $1 \cdot$ PSO $+\mathrm{C} \cdot$ TL $\cdot$ •PS $1 \cdot$ PSO + PS $1 \cdot \cdot P S 0$
$\mathrm{ST}=\mathrm{C} \cdot \mathrm{TL} \cdot \mathrm{PS} 1^{\prime} \cdot P S 0^{\prime}+\mathrm{TS} \cdot \mathrm{PS} 1^{\prime} \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0^{\prime}+\mathrm{C}^{\prime} \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0+\mathrm{TL} \cdot \mathrm{PS} 1 \cdot \mathrm{PS} 0$ H1 $=\mathrm{PS} 1$
$\mathrm{~F} 1=\mathrm{PS} 1$ H0 $=$ PS1'•PS0
O
- SA2

NS1 $=C \cdot T L \cdot P S 1^{\prime}+T S^{\prime} \cdot P S 1+C^{\prime} \cdot P S 1 \cdot \cdot P S 0$
NS0 $=$ TS•PS1•PSO' + PS1'•PS0 + TS'•PS1•PS0
ST $=\mathrm{C} \cdot \mathrm{TL} \cdot \mathrm{PS} 1{ }^{1}+\mathrm{C} \cdot \mathrm{PS} 1 \cdot \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 1$
$\mathrm{H} 1=\mathrm{PSO}$
$\mathrm{F} 1=\mathrm{PS} 0^{\prime}$
H0 $=$ PS1•PSO'

SA3
NS3 $=\mathrm{C}^{\prime} \cdot \mathrm{PS} 2+\mathrm{TL} \cdot \mathrm{PS} 2+\mathrm{TS} \cdot \mathrm{PS} 3 \quad \mathrm{NS} 2=\mathrm{TS} \cdot \mathrm{PS} 1+\mathrm{C} \cdot \mathrm{TL} \cdot \cdot \mathrm{PS} 2$ $\mathrm{NS} 1=\mathrm{C} \cdot \mathrm{TL} \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 1 \quad \mathrm{NS} 0=\mathrm{C}^{\prime} \cdot \mathrm{PS} 0+\mathrm{TL} \cdot \mathrm{PS} 0+\mathrm{TS} \cdot \mathrm{PS} 3$
$\mathrm{ST}=\mathrm{C} \cdot \mathrm{TL} \cdot \mathrm{PSO}+\mathrm{TS} \cdot \mathrm{PS} 1+\mathrm{C}^{\prime} \cdot \mathrm{PS} 2+\mathrm{TL} \cdot \mathrm{PS} 2+\mathrm{TS} \cdot \mathrm{PS} 3$ F1 $=$ PS1 + PS0

F0 $=$ PS 3


[^0]:    state description
    HG highway green (farm road red)
    HY highway yellow (farm road red)
    FG farm road green (highway red)
    FY farm road yellow (highway red)

