
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 21: Ant Brain FSM

Last Lecture
FSM Technologies

Today
A larger FSM example

Administrivia

Turn in Homework #7

Lab 8,9 on the web
Lab 8 due at end of following lab session
Lab 9 due on last day of class

Overview

Last lectures
Finite-state machines

Example: A sequence detector FSM
Example: A vending machine FSM

Today
A bigger example

Ant-brain FSM

Ant in a maze
Electronic ant, electronic maze

Design the ant
exit

0,0

0,127 127,127

127,0

start

Example: ant brain (Ward, MIT)
Sensors: L and R antennae, 1 if in touching wall
Actuators: F - forward step, TL/TR - turn left/right slightly
Goal: find way out of maze
Strategy: keep the wall on the right

Example: ant brain (special
case 1)

Left (L) Antenna touching the wall

Example: ant brain (special
case 2)

Ant Lost

Example: ant brain (special
case 2)

Ant Lost (another example

A: Following wall, touching
Go forward, turning
left slightly

B: Following wall, not touching
Go forward, turning right
slightly

C: Break in wall
Go forward, turning
right slightly

D: Hit wall again
Back to state A

E: Wall in front
Turn left until...

F: ...we are here, same as
state B

G: Turn left until...LOST: Forward until we
touch something

Ant behavior Goal: Find a way out of maze

Sensors on L and R antennae
Sensor = “1” if touching wall; “0” if not touching wall

L'R' ≡ no wall
L'R ≡ wall on right
LR' ≡ wall on left
LR ≡ wall in front
*** ≡ exit

Movement:
F ≡ forward one step
TL ≡ turn left 90 degrees
TR ≡ turn right 90 degrees

Notes & strategy
Notes

Maze has no islands
Corridors are wider than ant
Don’t worry about startup
Assume a Moore machine
Assume D flip-flops

Strategy
Partition your design into datapath and control
Keep the wall on the right

S1: Right antenna touching
Go forward S2: Break in wall

Turn right

S3: Left antenna touching
Turn left

The ant’s behavior

Reset
Done Flag

S0: Lost
Go forward

exit

exit

Can have multiple walls
Example: 00001100
⇒ Walls on South and East

The maze
Virtual maze

128 × 128 grid
Stored in memory
16384 8-bit words

YX is maze addresses
X is the ant’s horizontal position (7 bits)
Y is the ant’s vertical position (7 bits)

Each memory location says
00000001 ≡ No wall
00000010 ≡ North wall
00000100 ≡ West wall
00001000 ≡ South wall
00010000 ≡ East wall
00100000 ≡ Exit

Where do you start???

DonDon’’t look aheadt look ahead

What you need
An FSM for the ant

3 outputs
Go forward
Turn left
Turn right

Two 7-bit registers for X and Y
With preload, increment, decrement

A register to hold the ant’s heading
Logic to convert memory data to antennae info

Recommendations

7-bit counters for X, Y
Move horizontally: Increment or decrement X
Move vertically: Increment or decrement Y

Shift register for heading
N: 0001
W: 0010
S: 0100
E: 1000
Rotate right when ant turns right
Rotate left when ant turns left

Combinational logic for antennae decoder

Partition the design

Ant-Brain
FSM

Forward
Turn right

Turn left

Heading
(shift register)

North

South

East
West

X counter

Increment
Decrement

Preload

Y counter
Increment

Decrement
Preload

SRAM Address

Antennae
logic SRAM

L
R

Maze
Data

Design the ant-brain FSM

1. State diagram and state-transition table

2. State minimization

3. State assignment (or state encoding)

4. Minimize next-state logic

5. Implement the design

S1: Right antenna touching
Go forward S2: Break in wall

Turn right

S3: Left antenna touching
Turn left

Step 1a: State diagram

Reset
Done Flag

S0: Lost
Go forward

L’ R’

L

exit

exit
L’ R

L’ R

R

L

L’ R’

L

Exit State L R Next State Output
1 Reset
0 S0 0 0 S0 F

0 1 S1 F
1 0 S3 F
1 1 S3 F

0 S1 0 0 S2 F
0 1 S1 F
1 0 S3 F
1 1 S3 F

0 S2 0 0 S0 TR
0 1 S0 TR
1 0 S0 TR
1 1 S0 TR

0 S3 0 0 S1 TL
0 1 S1 TL
1 0 S3 TL
1 1 S3 TL

Step 1b: State-transition table

Step 2: State minimization
Two states are equivalent if they cannot be distinguished
at the outputs of the FSM

The outputs are the same for any input sequence
Two conditions for two states to be equivalent

1) Outputs must be the same in both states
2) Machine must transition to equivalent states for all
inputs

Any equivalent states in our state diagram?

Exit X Y L R X+ Y+ F TL TR
1 Reset
0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 1 1 0 0
0 0 1 0 1 1 1 0 0
0 0 1 1 1 1 1 0 0

0 0 1 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 0
0 1 1 0 1 1 1 0 0
0 1 1 1 1 1 1 0 0

0 1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1

0 1 1 0 0 0 1 0 1 0
1 1 0 1 0 1 0 1 0
1 1 1 0 1 1 0 1 0
1 1 1 1 1 1 0 1 0

Step 3: State encoding

S0 00
S1 00
S2 10
S3 11

Step 4: Minimize the logic

0 1 0 0
0 0 0 0
1 1 1 0
1 1 1 0

XX+

Y

R
L

0 0 1 0
1 1 1 0
1 1 1 0
1 1 1 0

XY+

Y

R
L

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

XF

Y

R
L

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

XTL

Y

L

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

XTR

Y

R
L

Step 5: Implement the design
Ant-Brain FSM

X+ = LY+LX’+X’YR’
Y+ = XY+X’R+X’L
F = X’
TL = XY
TR = XY’

Forward

Turn
right

Turn
left

Heading
(shift register)

North

South

East
West

X counter

Forward
East

West

Y counter

SRAM Address

Turn
right

Turn
left

Preload
Forward

North
South

Preload

Antennae
logicSRAM

L
R

Maze
Data

SRAM
Address

N S E W
L R

Antennae logic
Each memory location says

00000001 ≡ No wall
00000010 ≡ North wall (NW)
00000100 ≡ West wall (WW)
00001000 ≡ South wall (SW)
00010000 ≡ East wall (EW)
00100000 ≡ Exit

The ant can be heading
N: 0001
W: 0010
S: 0100
E: 1000

Logic for right antennae
R = NW(N + W) +

WW(W + S) +
SW(S + E) +
EW(E + N)

Logic for left antennae
L = NW(N + E) +

WW(W + N) +
SW(S + W) +
EW(E + S)

Gate count:
4 2-input ORs
8 2-input ANDs
2 4-input ORs

What we left out...
Crumbs in cell

Ant eats crumbs in every cell it visits
Writes crumb file back to SRAM
Read crumb file, for future display on monitor

Need a memory controller
A state machine to talk to the SRAM

Need to deal with startup, exit states

