Administrivia CSE 370 Spring 2006 Introduction to Digital Design Turn in Homework #7 Lecture 21: Ant Brain FSM Lab 8,9 on the web Lab 8 due at end of following lab session Lab 9 due on last day of class Last Lecture FSM Technologies **Today** A larger FSM example **Overview**

- Last lectures
 - Finite-state machines
 - Example: A sequence detector FSM
 - Example: A vending machine FSM
- Today
 - A bigger example
 - Ant-brain FSM

Ant in a maze

- Electronic ant, electronic maze
 - Design the ant

Example: ant brain (Ward, MIT)

Sensors: L and R antennae, 1 if in touching wall
 Actuators: F - forward step, TL/TR - turn left/right slightly
 Goal: find way out of maze
 Strategy: keep the wall on the right

Example: ant brain (special case 1)

Left (L) Antenna touching the wall

8

Example: ant brain (special case 2)

Ant Lost

Example: ant brain (special case 2)

Ant Lost (another example

8

Ant behavior

Goal: Find a way out of maze

Sensors on L and R antennae
Sensor = "1" if touching wall; "0" if not touching wall
L'R' = no wall
L'R = wall on right
LR' = wall on left
LR = wall in front
*** = exit
Movement:
F = forward one step
TL = turn left 90 degrees
TR = turn right 90 degrees

Notes & strategy

- Notes
 - Maze has no islands
 - Corridors are wider than ant
 - Don't worry about startup
 - Assume a Moore machine
 - Assume D flip-flops

Strategy

- Partition your design into datapath and control
- Keep the wall on the right

The ant's behavior

The maze

Virtual maze

128 × 128 grid

Stored in memory

16384 8-bit words

YX is maze addresses

- X is the ant's horizontal position (7 bits)
- Y is the ant's vertical position (7 bits)
- Each memory location says
 - ■00000001 = No wall

■00000010 = North wall

- ■00000100 = West wall
- ■00001000 = South wall
- ■00010000 = East wall
- ■00100000 = Exit

Can have multiple walls Example: 00001100 \Rightarrow Walls on South and East

What you need

An FSM for the ant

3 outputs

Go forward

Turn left

- Turn right
- Two 7-bit registers for X and Y

With preload, increment, decrement

- A register to hold the ant's heading
- Logic to convert memory data to antennae info

Where do you start???

Don't look ahead

Recommendations

- 7-bit counters for X, Y
 - Move horizontally: Increment or decrement X
 - Move vertically: Increment or decrement Y
- Shift register for heading
 - N: 0001
 - W: 0010
 - S: 0100
 - E: 1000
 - Rotate right when ant turns right
 - Rotate left when ant turns left
- Combinational logic for antennae decoder

Partition the design

Design the ant-brain FSM

- 1. State diagram and state-transition table
- 2. State minimization
- 3. State assignment (or state encoding)
- 4. Minimize next-state logic
- 5. Implement the design

Step 1a: State diagram

Step 1b: State-transition table

Exit	State	LR	Next State	Output
1	Reset			
0	S0	0 0	S0	F
		0 1	S1	F
		10	S3	F
		11	S3	F
0	S1	0 0	S2	F
		01	S1	F
		10	S3	F
		11	S3	F
0	S2	0 0	S0	TR
		01	S0	TR
		10	S0	TR
		11	S0	TR
0	S3	0 0	S1	TL
		01	S1	TL
		10	S3	TL
		11	S3	TL

Step 2: State minimization

- Two states are equivalent if they cannot be distinguished at the outputs of the FSM
 - The outputs are the same for any input sequence
- Two conditions for two states to be equivalent
 - 1) Outputs must be the same in both states
 - 2) Machine must transition to equivalent states for all inputs
- Any equivalent states in our state diagram?

Step 3: State encoding

Exit	ΧY	LR	X+ Y+	<u>F TL TR</u>	
1	Reset				
0	0 0	0 0	0 0	1 0 0	S0 🔺 00
	0 0	01	0 1	1 0 0	S1 A 00
	00	10	1 1	1 0 0	S2 A 10
	00	11	1 1	1 0 0	
0	01	0 0	1 0	1 0 0	55 🔨 11
	0 1	01	0 1	1 0 0	
	0 1	10	1 1	1 0 0	
	01	11	1 1	1 0 0	
0	10	00	0 0	0 0 1	
	10	01	0 0	0 0 1	
	10	10	0 0	0 0 1	
	10	11	0 0	0 0 1	
0	11	0 0	0 1	0 1 0	
	11	01	0 1	0 1 0	
	11	10	1 1	0 1 0	
	11	11	1 1	010	

Step 4: Minimize the logic

Step 5: Implement the design

Antennae logic

Each memory location says ■ 00000001 = No wall Logic for right antennae \blacksquare 00000010 \equiv North wall (NW) R = NW(N + W) +WW(W + S) +■00000100 = West wall (WW) SW(S + E) + \mathbf{I} 00001000 = South wall (SW) EW(E + N)■00010000 = East wall (EW) ■00100000 = Exit Logic for left antennae L = NW(N + E) +WW(W + N) +The ant can be heading SW(S + W) +Gate count: N: 0001 EW(E + S)4 2-input ORs W: 0010 8 2-input ANDs S: 0100 2 4-input ORs E: 1000

What we left out...

Crumbs in cell
Ant eats crumbs in every cell it visits
Writes crumb file back to SRAM
Read crumb file, for future display on monitor
Need a memory controller
A state machine to talk to the SRAM
Need to deal with startup, exit states