
Name:

CSE 370, Autumn, 2007, Final Exam

Please do not turn the page until instructed to do so.

Rules:

● Please remove everything from your desk area except one sheet of notes and whatever
pens/pencils you want to use.
● Please stop working promptly at 10:20.
● If you rip the pages apart, please staple them back together when you are done.

Advice:

● The exam should have 11 pages; check before you start.
● Read questions carefully before you start writing.
● Write down partial solutions for partial credit.
● There are 140 points on the exam distributed unevenly; try to distribute your effort
roughly according to point value.
● The questions are not necessarily ordered according to difficulty. Skip around to find
parts that are easy for you.
● If you have questions, ask.
● The last 2 exercises are “challenge exercises”. They do not count towards your normal
class score at all. If you complete them well, it could have a small effect when assigning
final grades at the end of the quarter. Do not work on them unless you are 100% sure you
are done with the rest of the exam.

- 1/11 -
1. Finite state machine implementation (15 points)

Grading Summary
1: / 15
2: / 20
3: / 20
4: / 20
5: / 10
6: / 15
7: / 20
8: / 20
Total: / 140

Solution

- 1/11 -
1. Finite state machine implementation (15 points)

- 2/11 -
2. Important trivia: oxymoron? (20 points)

A
out=00

C
out=00

B
out=001

0

1

1

0

0

D
out=01

0

1

For the following state machine, write three state encoding tables (not encoded state transition
tables): one in the binary style, one in the one-hot style, and one in the output style. For each style,
give one advantage a FSM implemented in that style would likely have over each of the other styles
(a total of six advantages). You may “reuse” advantages, as long as they are accurate.

E
out=10

G
out=10

F
out=111

0

1

1
0

H
out=00

0

1

J
out=00

0

1

0

 Binary One-hot Output
A 0000 000000001 00000
B 0001 000000010 00001
C 0010 000000100 00010
D 0011 000001000 01000
E 0100 000010000 10000
F 0101 000100000 11000
G 0110 001000000 10000
H 0111 010000000 00011
J 1000 100000000 00100

Binary is better than both one-hot and output, because it uses the fewest registers
One-hot is better than binary and output because it has the simplest next state logic
Output is better than one-hot because it uses fewer registers, and it is better than binary, because
its output logic is simpler.

- 2/11 -

- 3/11 -

2. Important trivia: oxymoron? (20 points)

What Boolean logic theorem are both K-map and Quine-McCluskey minimization based on?
(Either of the two dual forms is fine.)

3. State minimization (20 points)

What is the fundamental structural difference between stateless (memoryless) circuits and circuits
with memory?

What is the fundamental structural feature of circuits that creates the possibility of kinds of hazards
we studied in 370? Remember that the glitches we talked about in 370 are all caused by a single input
bit changing from 0 to 1 or 1 to 0. You can draw a little picture, if you want to.

For each of the following questions, give a brief answer (one or two sentences).

An important trade-off in circuit design is size versus speed. Give one reason that given two equally
well-designed circuits, one can be larger and faster than another.

XY | X¬Y = X --or-- (X | Y)(X | ¬Y) = X

Stateful circuits have feedback loops somewhere. Stateless circuits do not.

All circuits that can glitch as a result of a single input bit changing have
“reconvergent fanout”. From a single point in the circuit you can trace two
different paths (of potentially different delay) that come back together at another
point in the circuit.

Larger circuits can use extra gates to speculatively compute two or more
alternative outputs, and then the correct one can be selected when necessary.
(There are lots of other correct answers to this one).

- 3/11 -

- 4/11 -

3. State minimization (20 points)

4. Control-datapath design (20 points)

B
out=1

C
out=1

D
out=0

1

0

11

0,10

E
out=0

0

0,1

Below is an example of a finite state machine that requires two “rounds” of minimization with the
row matching method to be completely minimized. Draw the state transition table for this FSM and
indicate which pair of states would be merged first and which pair would be merged second. You do
not need to draw the minimized FSM.

A
out=0

F
out=1

Some FSMs cannot be fully minimized with the row matching method, no matter how many rounds
they are given. Draw a simple FSM that can be minimized with the implication chart method, but
not the row matching method. Examples with a very small number of states exist, though any
correct example will get full credit.

0,1

There was a mistake
on the exam. These

two labels should
have been switched

NextState
i=0 i=1 Output

A B C 0
B E D 1
C E D 1
D F F 0
E F F 0
F F F 1

Merge the pairs (B,C) and (D,E) in either order.

B
out=0

A
out=0

1

0

1

0

- 4/11 -

- 5/11 -

4. Control-datapath design (20 points)

5. Transistors (10 points)

Design a datapath and finite state machine controller to implement the following specification. Your
circuit should store two 16-bit numbers X and Y, which are initialized by the magic wand method.
Every clock cycle the circuit takes a new 16-bit number as input. In the normal operating mode, the
circuit will add the input to X to compute a new value for X. If X gets larger that Y, the circuit
should go into a “cool down” mode for three clock cycles, where the inputs are subtracted from X
instead of added, and then resume normal operating mode. If X ever overflows, the circuit should go
into an error state and remain there. You may use the conventional arithmetic operations (add
subtract, mux, compare) as primitive blocks.

A B

overflow +/- add/sub

Sum/Diff

 load
Y[15:0]

 load
X[15:0]

A B

Comparator

A > B

input[15:0]

normal
[ad=1]

ov

gt

ad

cool1
[ad=0]

cool2
[ad=0]

cool3
[ad=0]

error
[ad=x]

ov

ov

ov

ov

~ov & gt

~ov

~ov

~ov

1 0

~ov & ~gt

- 5/11 -

- 6/11 -

5. Transistors (10 points)

6. Ripple-carry versus carry look-ahead (15 points)

A

A

B

B

Output

As a reminder, below is a schematic for a 2-input NAND gate in the static CMOS style. Draw a 3-
input OR gate in the static CMOS style.

A

A B

B X

X
Output

C

C
X

- 6/11 -
6. Ripple-carry versus carry look-ahead (15 points)

- 7/11 -

Ripple-carry adders (RCAs) are smaller and slower; carry look-ahead adders (CLAs) are bigger and
faster. Below, as a reminder, are a sketch of an 8-bit RCA, and an 8-bit CLA. The letters (A,B,C,D)
in the CLA are there just to identify the four different kinds of building blocks it is constructed
from. Use the information in the component size and delay table below to complete the size and
delay table for adders of different numbers of bits.

A

B

C

D

A A A A A A A

B B B

B B B B

B B B B

C C C C C C C

D D D D D D D

FAFAFAFAFAFAFAFA

Component Size Delay
A 3 2
B 3 2
C 2 2
D 4 4
FA 8 4

Adder RCA CLA
bits Size Delay Size Delay
2 16 8 21 10
4 32 48
8 64 108
16 128 240
32 256 528

One metric used to compare circuits of different sizes and delays is the size-delay product. As the
name suggests, one simply multiplies the size and delay of a circuit together to get its size-delay
product. Notice that for 2 bits, the RCA is both smaller and lower delay than the CLA, meaning
that it wins easily in size-delay product. What is the smallest number of bits for which the CLA has
an advantage in size-delay product?

7. Eliminate the static hazard (20 points)

Adder RCA CLA
bits Size Delay Size Delay
2 16 8 21 10
4 32 16 48 12
8 64 32 108 14
16 128 64 240 16
32 256 128 528 18

8 (64 * 32 > 108 * 14)

- 7/11 -
7. Eliminate the static hazard (20 points)

- 8/11 -
8. Finally, some correct Verilog (20 points)

¬A
¬B
¬D

B

C

This circuit has a static hazard. Identify an input pattern transition that could trigger this hazard,
and add a single OR gate (and a single AND gate input) to fix the hazard.

AB
CD 00 01 11 10

00
01
11
10

0 1 1 0
0 1 0 0
1 1 0 1
1 1 1 1

¬A
C

¬D
Transition:

A=1,B=0,C=0,D=1 <---> A=1,B=1,C=0,D=1

- 9/11 -

- 8/11 -
8. Finally, some correct Verilog (20 points)

Translate this Verilog code into a finite state machine drawing and a datapath schematic. Assume
that all variables are properly declared. i is an input to the datapath.

 always @ (posedge clk) begin
 if (rst) begin
 state <= 2'b00;
 x <= 8'b00000000;
 end
 else begin
 state <= nextState;
 x <= nextX;
 end
 end

 always @ (state or x or i)
 begin
 nextState = state;
 nextX = x;
 if (i < x) begin
 nextX = x - i;
 nextState = 2'b10;
 end
 else if (state == 2'b00) begin
 nextX = x + i;
 nextState = 2'b11;
 end
 else if (state == 2'b10)
 nextState = 2'b11;
 else
 nextState = 2'b00;
 end

Challenge 1: Transistor hacking

A B

+

Sum

 clear
X[7:0]

A B

Comparator

A > B

i[7:0]

"00"
[ad=1]

gt

ad

"10"
[ad=0]

"11"
[ad=0]

gt

~gt

reset

gt

1 0

A B

-

Diff

1 0

gt

~gt
~gt

