Lecture 2: The Magical Base-2

CSE 370, Autumn 2007 Benjamin Ylvisaker

Daily Quiz

- Have you added yourself to the class mailing list?
- Do it by 5:30 this afternoon to get a 4 on today's daily quiz
- Tell classmates who didn't make it to class on time at your own discretion

2

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 **2**

Administrivia

• Office hours

Monday	Ramkuma	lab	
Tuesday	Josh	1:30-2:30	lab
Wednesday	Benjamin	1:30-2:30	210
Thursday	Benjamin	9:30-10:30	210
Friday	Nikhil	11:30-12:30	lab

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 3

Elementary Math Review

3

- Positional number notation
 - 2,104 = $2 \times 1,000$ + 1×100 + 0×10 + 4×1 = 2×10^3 + 1×10^2 + 0×10^1 + 4×10^0
- Generalize to arbitrary base b
 - XYZ = X×b² + Y×b¹ + Z×b⁰ where X, Y and Z are digits with values in the range [0..b-1]

Bases of Interest

- In 370, we are interested in the following bases:
 - Binary [0,1]
 - Octal [0..7]
 - Decimal [0..9]
 - Hexadecimal [0..9,A..F]
 - A=10, B=11, C=12, D=13, E=14, F=15

5

University of Washington, Comp. Sci. and Eng.

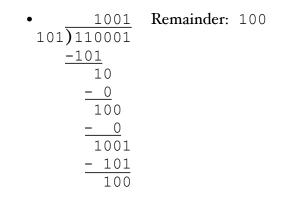
CSE 370, Autumn, 2007, Lecture 2 5

Conversion to Decimal

```
1001101<sub>2</sub>
1×2<sup>6</sup>+0×2<sup>5</sup>+0×2<sup>4</sup>+1×2<sup>3</sup>+1×2<sup>2</sup>+0×2<sup>1</sup>+1×2<sup>0</sup>
1×64+0×32+0×16+1×8 +1×4 +0×2 +1×1
64+
8+4+
77
92A70<sub>16</sub>
9×16<sup>4</sup> +2×16<sup>3</sup> +10×16<sup>2</sup>+7×16<sup>1</sup>+0×16<sup>0</sup>
9×65536+2×4096+10×256+7×16 +0×1
589824 +8192 +2560 +112
600688
```

Arithmetic is the Same in All Bases

• 1001101_2	32175 ₈	27AA32 ₁₆
+ 101011_2	+ <u>1622₈</u>	+ <u>92A70₁₆</u>
1111000_2	34017 ₈	30D4A2 ₁₆
• 1001101_2	32175 ₈	27AA32 ₁₆
- 101011_2	- <u>1622₈</u>	- 92A70 ₁₆
100010_2	30353 ₈	1E7FC2 ₁₆


University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 7

Multiplication, Too

• 1101101 ₂	A3 ₁₆
× 101011 ₂	×17 ₁₆
11011012	47516
11011012	+A3 ₁₆
0000002	EA5 ₁₆
11011012	
0000002	
$+1101101_2$	
1001001011112	

Division, Too

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 9

Conversion to Binary by Successive Division

```
• 154_{10} \div 2_{10} = 77_{10} Remainder 0 10011010

77_{10} \div 2_{10} = 38_{10} Remainder 1

38_{10} \div 2_{10} = 19_{10} Remainder 0

19_{10} \div 2_{10} = 9_{10} Remainder 1

9_{10} \div 2_{10} = 4_{10} Remainder 1

4_{10} \div 2_{10} = 2_{10} Remainder 0

2_{10} \div 2_{10} = 1_{10} Remainder 0

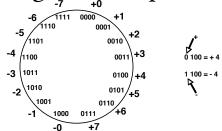
1_{10} \div 2_{10} = 0_{10} Remainder 1

Read the result "up"
```

... and Back Again

- $10011010_2 \div 1010_2 = 1111_2$ Remainder 100_2 $1111_2 \div 1010_2 = 1_2$ Remainder 101_2 $1_2 \div 1010_2 = 0_2$ Remainder 1_2
- Converting from base B to C
 - Do divisions in base B
 - Divide by C

University of Washington, Comp. Sci. and Eng.


CSE 370, Autumn, 2007, Lecture 2 **11**

The Trouble with Negative Numbers

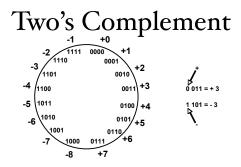
II

- The symbol "-" for negative can be used in any base, when doing arithmetic by hand
- Computers only have two symbols: 1, 0. No "-"
- Also, computers usually do arithmetic with numbers that are a fixed number of bits "wide" (like, 8, 16, 32, 64)

Sign/Magnitude Representation

- High-order (left-most) bit is the sign. 0=positive, 1=negative
- Remaining bits are the magnitude
- With N bits, represent numbers between $-2^{N-1}+1$ and $2^{N-1}-1$

13


• Two representations of 0!

University of Washington, Comp. Sci. and Eng.

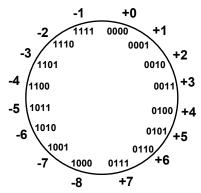
CSE 370, Autumn, 2007, Lecture 2 13

Sign/Magnitude

- Pro: easy to read and write for humans
- Con: harder to do basic arithmetic correctly with a computer
- Result: rarely used

- High-order (left-most) bit is the sign. 0=positive, 1=negative
- Remaining bits are the magnitude (encoded in a funny way)
- With N bits, represent numbers between -2^{N-1} and $2^{N-1}-1$

15


• Just one representations of 0

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 15

Negation in 2's Complement

• Flip the bits and add 1

Addition in 2's Complement

•	0011	(3)	1101	(-3)
	+0101	(5)	+0101	(5)
	1000	(-8)	0010	(2)
	0011	(3)	1101	(-3)
	+1011	(-5)	+1011	(-5)
	1110	(-2)	1000	(-8)

• Subtraction is just addition with the second operand negated first

17

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 17

Later in the Course

- Efficient circuits for implementing arithmetic
- Detecting overflow/underflow
- Changing the width of numbers without changing the number

Fractional Numbers

- We might want to represent non-integral numbers
- Two popular approaches:
 - Fixed-point
 - Floating-point
- Not covered in 370

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 19

Thank You for Your Attention

- Lab I has changed slightly, I'll post an update soon (and send a mail to the class mailing list)
- Continue reading the book
- Continue/start homework 1
- Next time: the fundamentals of Boolean logic