Lecture 2: The Magical Base-2

CSE 370, Autumn 2007 Benjamin Ylvisaker

	1
Daily Quiz	
• Have you added yourself to the class mailing list?	
• Do it by 5:30 this afternoon to get a 4 on today's daily quiz	
• Tell classmates who didn't make it to class on time at your own discretion	
University of Washington, Comp. Sci. and Eng. 2 CSE 370, Autumn, 2007, Lecture 2	2

Administrivia

 Office hours 	s		
Monday	Ramkuma	r ???	lab
Tuesday	Josh	1:30-2:30	lab
Wednesday	Benjamin	1:30-2:30	210
Thursday	Benjamin	9:30-10:30	210
Friday	Nikhil	11:30-12:30	lab

Elementary Math Review

- Positional number notation
- 2,104 = 2×1,000 + 1×100 + 0×10 + 4×1 = 2×10³ + 1×10² + 0×10¹ + 4×10⁰
- Generalize to arbitrary base b
- XYZ = X×b² + Y×b¹ + Z×b⁰ where X, Y and Z are digits with values in the range [0..b-1]

University of Washington, Comp. Sci. and Eng. 4 CSE 370, Autumn, 2007, Lecture 2

Bases of Interest

- In 370, we are interested in the following bases:
- Binary [0,1]
- Octal [0..7]
- Decimal [0..9]
- Hexadecimal [0..9,A..F]
 - A=10, B=11, C=12, D=13, E=14, F=15

University of Washington, Comp. Sci. and Eng. 5 CSE 370, Autumn, 2007, Lecture 2

Conversion to Decimal

• 1001101_2 = $1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = $1 \times 64 + 0 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$ = 64 + 8 + 4 + 1= 77• $92A70_{16}$ = $9 \times 16^4 + 2 \times 16^3 + 10 \times 16^2 + 7 \times 16^1 + 0 \times 16^0$ = $9 \times 65536 + 2 \times 4096 + 10 \times 256 + 7 \times 16 + 0 \times 1$ = 589824 + 8192 + 2560 + 112= 600688

6

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 6

Arithmetic is the Same in All Bases

• 1001101_2	32175 ₈	27AA32 ₁₆
+ 101011_2	+ <u>1622₈</u>	+ <u>92A70₁₆</u>
1111000_2	34017 ₈	30D4A2 ₁₆
• 1001101_2	32175 ₈	27AA32 ₁₆
- 101011_2	- <u>1622₈</u>	- <u>92A70₁₆</u>
100010_2	30353 ₈	1E7FC2 ₁₆

CSE 370, Autumn, 2007, Lecture 2 7 7 University of Washington, Comp. Sci. and Eng.

Multiplication, Too

$\begin{array}{c} \bullet & 1101101_2 \\ \times & 101011_2 \\ \hline 11011011_2 \\ \vdots & 1101101_2 \\ \vdots & 0000002 \\ \vdots & 1101101_2 \\ 00000002 \\ \vdots & 1101101_2 \\ 00000002 \\ + 11001101_2 \\ \end{array}$	A3 ₁₆ <u>×17₁₆</u> 475 ₁₆ <u>+A3₁₆</u> EA5 ₁₆		
$\frac{+11011012}{100100110011112}$ University of Washington, Comp. Sci. and Eng.	8	CSE 370, Autumn, 2007, Lecture 2	8

Division, Too

University of Washington, Comp. Sci. and Eng. 13 CSE 370, Autumn, 2007, Lecture 2

Sign/Magnitude

- Pro: easy to read and write for humans
- Con: harder to do basic arithmetic correctly with a computer
- Result: rarely used

University of Washington, Comp. Sci. and Eng. 14 CSE 370, Autumn, 2007, Lecture 2

Two's Complement $-\frac{1}{3}$, $\frac{+0}{100}$, $\frac{+1}{2}$, $\frac{+2}{100}$, $\frac{+1}{2}$, $\frac{+2}{100}$, $\frac{+1}{100}$, $\frac{+2}{1001}$,

- High-order (left-most) bit is the sign. 0=positive, 1=negative
- Remaining bits are the magnitude (encoded in a funny way)
- + With N bits, represent numbers between $-2^{\mathbb{N}-1}$ and $2^{\mathbb{N}-1}-1$

15

• Just one representations of 0

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 2 15

14

Negation in 2's Complement

Addition in 2's Complement

$\begin{array}{r} 0011 \\ +0101 \\ 1000 \end{array}$	(3) (5) (-8)	$\frac{1101}{+0101}\\ 0010$	(-3) (5) (2)
$ \begin{array}{r} 0011 \\ +1011 \\ 1110 \end{array} $	(3)	1101	(-3)
	(-5)	+1011	(-5)
	(-2)	1000	(-8)

• Subtraction is just addition with the second operand negated first

University of Washington, Comp. Sci. and Eng. 17

•

CSE 370, Autumn, 2007, Lecture 2 **17**

Later in the Course

- Efficient circuits for implementing arithmetic
- Detecting overflow/underflow
- Changing the width of numbers without changing the number

Fractional Numbers

- We might want to represent non-integral numbers
- Two popular approaches:
- Fixed-point
- Floating-point
- Not covered in 370

University of Washington, Comp. Sci. and Eng. 19 CSE 370, Autumn, 2007, Lecture 2

Thank You for Your Attention

- Lab I has changed slightly, I'll post an update soon (and send a mail to the class mailing list)
- Continue reading the book
- Continue/start homework 1
- Next time: the fundamentals of Boolean logic

