Lecture 3: All Hail George Boole

CSE 370, Autumn 2007 Benjamin Ylvisaker

Where We Are

- Last lecture: Binary numbers & arithmetic
- This lecture: Boolean algebra
- Next lecture: Playing around w/ Boolean functions
- Homework 1 due Wednesday at the beginning of class
- Lab 1 this week. Read it before the session starts!

Boolean Logic/Algebra

- Notation for writing down precise logical statements (in propositional logic)
- Primitives: true, false, variables
- Connectives: NOT, AND, OR, IMPLIES, ...
- (Almost) all memoryless digital circuits can be seen as Boolean algebra expressions

3

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

8.., ... 8...

Why Do We Care?

- Understanding Boolean logic helps us design "simpler" circuits, both by hand and automatically
- ((A AND B) OR (NOT A AND B)) AND A
- Equivalent to: A AND B

Lots of Alternative Notations

- I will mostly use:
 - ¬A for NOT A
 - A+B for A OR B
 - A•B for A AND B
- Book lists all of the common notations

University of Washington, Comp. Sci. and Eng.

- 5

CSE 370, Autumn, 2007, Lecture 3

From Expressions to Gates

• NOTA

• A OR B

• A AND B

The Useful Theorems

- Several slides of statements of basic facts about Boolean algebra
- Every theorem comes with a "dual"

University of Washington, Comp. Sci. and Eng.

7

CSE 370, Autumn, 2007, Lecture 3

o and I

• X+o=X

 $X \bullet_{I} = X$

• X+I=I

 $X^{\bullet}o=o$

Idempotence

• X+X=X

 $X \bullet X = X$

University of Washington, Comp. Sci. and Eng.

9

CSE 370, Autumn, 2007, Lecture 3

Involution

 $\bullet \neg \neg X = X$

Complementarity

•
$$X+\neg X=I$$

$$X \bullet \neg X = 0$$

University of Washington, Comp. Sci. and Eng.

II

CSE 370, Autumn, 2007, Lecture 3

Commutativity

•
$$X+Y=Y+X$$

$$X \bullet Y = Y \bullet X$$

Associativity

$$\bullet (X+Y)+Z = X+(Y+Z) \qquad (X\bullet Y)\bullet Z = X\bullet (Y\bullet Z) \\ = X+Y+Z \qquad = X\bullet Y\bullet Z$$

University of Washington, Comp. Sci. and Eng.

13

CSE 370, Autumn, 2007, Lecture 3

Distributivity

•
$$X \bullet (Y+Z)=(X \bullet Y)+(X \bullet Z)$$
 $X+(Y \bullet Z)=(X+Y) \bullet (X+Z)$

Some Simplifications

•
$$(X \bullet Y) + (X \bullet \neg Y) = X$$

$$(X+Y) \bullet (X+\neg Y)=X$$

•
$$X+(X \cdot Y)=X$$

$$X \bullet (X+Y)=X$$

•
$$(X+\neg Y)$$
• $Y=X$ • Y

$$(X \bullet \neg Y) + Y = X + Y$$

University of Washington, Comp. Sci. and Eng.

15

CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 1

•
$$(X \bullet Y) + (X \bullet \neg Y)^{2} = X$$

$$(X+Y) \bullet (X+\neg Y) \stackrel{?}{=} X$$

• By distributivity

•
$$X \cdot (Y + \neg Y) \stackrel{?}{=} X$$

$$X + (Y \bullet_{\neg} Y)^{\frac{\gamma}{-}} X$$

• By complementarity

$$X\text{+}\text{o}^{\frac{?}{=}}X$$

• By identity

$$X=X$$

Prove Simplification 2

• $X+(X \cdot Y) \stackrel{?}{=} X$ $X \cdot (X+Y) \stackrel{?}{=} X$

• By identity

• $(X \bullet_I) + (X \bullet_Y) \stackrel{?}{=} X$ $(X + O) \bullet (X + Y) \stackrel{?}{=} X$

• By distributivity

• $X \cdot (I + Y) \stackrel{?}{=} X$ $X + (O \cdot Y) \stackrel{?}{=} X$

• By identity

• $X \bullet I \stackrel{?}{=} X$ $X + O \stackrel{?}{=} X$

• By identity

• X=X X=X

University of Washington, Comp. Sci. and Eng.

17

CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 3

- $(X+\neg Y)\bullet Y\stackrel{?}{=}X\bullet Y$ $(X\bullet\neg Y)+Y\stackrel{?}{=}X+Y$
 - By simplification 2
- $\bullet \quad (X + \neg Y) \bullet ((Y + \neg Y) \bullet Y) \stackrel{?}{=} X \bullet Y \qquad (X \bullet \neg Y) + ((Y \bullet \neg Y) + Y) \stackrel{?}{=} X + Y$
 - By associativity
- $\bullet \quad (X+\neg Y)\bullet (Y+\neg Y)\bullet Y\stackrel{?}{=}X\bullet Y \qquad \qquad (X\bullet\neg Y)+(Y\bullet\neg Y)+Y\stackrel{?}{=}X+Y$
 - By distributivity
- $((X \bullet Y) + \neg Y) \bullet Y \stackrel{?}{=} X \bullet Y$ $((X + Y) \bullet \neg Y) + Y \stackrel{?}{=} X + Y$
 - By distributivity
- $(X \bullet Y \bullet Y) + (\neg Y \bullet Y) \stackrel{?}{=} X \bullet Y$ $(X + Y + Y) \bullet (\neg Y + Y) \stackrel{?}{=} X + Y$
 - By associativity, idempotence and complementarity
- $(X \cdot Y) + O^{2} \times Y$ $(X + Y) \cdot I^{2} \times Y$
 - By operations with 1 and 0
- $X \bullet Y = X \bullet Y$ X + Y = X + Y

DeMorgan's law (or theorem)

$$\bullet \neg (X+Y) = \neg X \bullet \neg Y \qquad \neg (X\bullet Y) = \neg X + \neg Y$$

$$\neg(X \bullet Y) = \neg X + \neg Y$$

University of Washington, Comp. Sci. and Eng.

19

CSE 370, Autumn, 2007, Lecture 3

Duality

- A Boolean function is just an expression with a name and a "parameter list" of variables used in the expression
 - $f(A,B,C) = (A \cdot B) + C$
- The dual of a function (written f(A,B,C)D) is the function with •'s and +'s swapped and 1's and o's swapped
 - $f(A,B,C)^D = (A+B) \cdot C$

A Bigger Circuit Diagram

• $(X \bullet Y \bullet Y) + (\neg Y \bullet Y)$

University of Washington, Comp. Sci. and Eng.

21

CSE 370, Autumn, 2007, Lecture 3

Real Circuits Can Hurt You

- Current flows from higher voltages to lower voltages
- I=V_{CC}, o=Gnd
- Must always hook logic chips up to power and ground
- Never connect the outputs of logic gates together!

Thank You for Your Attention

• Read the lab assignment before you show up for your session!

23

- Continue reading the book
- Continue homework 1

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3