Lecture 3:
 All Hail George Boole

CSE 370, Autumn 2007

Benjamin Ylvisaker

Where We Are

- Last lecture: Binary numbers \& arithmetic
- This lecture: Boolean algebra
- Next lecture: Playing around w/ Boolean functions
- Homework i due Wednesday at the beginning of class
- Lab i this week. Read it before the session starts!

Boolean Logic/Algebra

- Notation for writing down precise logical statements (in propositional logic)
- Primitives: true, false, variables
- Connectives: NOT, AND, OR, IMPLIES, ...
- (Almost) all memoryless digital circuits can be seen as Boolean algebra expressions

Why Do We Care?

- Understanding Boolean logic helps us design
"simpler" circuits, both by hand and automatically
- ((A AND B) OR (NOT A AND B)) AND A
- Equivalent to: A AND B

Lots of Alternative Notations

- I will mostly use:
- \neg A for NOT A
- $\mathrm{A}+\mathrm{B}$ for A OR B
- $\mathrm{A} \cdot \mathrm{B}$ for A AND B
- Book lists all of the common notations

From Expressions to Gates

- NOT A
- A OR B
- A AND B

The Useful Theorems

- Several slides of statements of basic facts about Boolean algebra
- Every theorem comes with a "dual"

O and I

- X+o=X X•I=X
- $\mathrm{X}+\mathrm{r}=\mathrm{I} \quad \mathrm{X} \cdot \mathrm{O}=0$

Idempotence

- $\mathrm{X}+\mathrm{X}=\mathrm{X}$ $\mathrm{X} \cdot \mathrm{X}=\mathrm{X}$

Involution

- $\rightarrow \neg \mathrm{X}=\mathrm{X}$

Complementarity

- $\mathrm{X}+\neg \mathrm{X}=\mathrm{I}$ $\mathrm{X} \bullet \neg \mathrm{X}=0$

Commutativity

- $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X} \quad \mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \bullet \mathrm{X}$

Associativity

$$
\text { - } \begin{aligned}
(\mathrm{X}+\mathrm{Y})+\mathrm{Z} & =\mathrm{X}+(\mathrm{Y}+\mathrm{Z}) & (\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z} & =\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z}) \\
& =\mathrm{X}+\mathrm{Y}+\mathrm{Z} & & =\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}
\end{aligned}
$$

Distributivity

- $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \quad \mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$

Some Simplifications

- $(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \bullet \neg \mathrm{Y})=\mathrm{X} \quad(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\neg \mathrm{Y})=\mathrm{X}$
- $\mathrm{X}+(\mathrm{X} \cdot \mathrm{Y})=\mathrm{X}$
$\mathrm{X} \cdot(\mathrm{X}+\mathrm{Y})=\mathrm{X}$
- $(\mathrm{X}+\neg \mathrm{Y}) \cdot \mathrm{Y}=\mathrm{X} \cdot \mathrm{Y}$
$(\mathrm{X} \cdot \neg \mathrm{Y})+\mathrm{Y}=\mathrm{X}+\mathrm{Y}$

Prove Simplification I

- $(\mathrm{X} \cdot \mathrm{Y})_{+}(\mathrm{X} \cdot \neg \mathrm{Y})^{\underline{?}} \mathrm{X} \quad(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\neg \mathrm{Y})^{\underline{?}} \mathrm{X}$
- By distributivity
- $\mathrm{X} \cdot(\mathrm{Y}+\neg \mathrm{Y})^{\underline{?} \mathrm{X}}$
$\mathrm{X}+\left(\mathrm{Y} \cdot{ }_{\neg} \mathrm{Y}\right) \stackrel{\underline{2}}{ } \mathrm{X}$
- By complementarity
- $\mathrm{X} \cdot \mathrm{I}^{\underline{2}} \mathrm{X}$
$\mathrm{X}+\mathrm{O}^{\underline{2} \mathrm{X}} \mathrm{X}$
- By identity
- $\mathrm{X}=\mathrm{X}$
$X=X$

Prove Simplification 2

- $\mathrm{X}+(\mathrm{X} \cdot \mathrm{Y})^{\underline{2} \mathrm{X}} \quad \mathrm{X} \cdot(\mathrm{X}+\mathrm{Y})^{\underline{2} \mathrm{X}}$
- By identity
- $(\mathrm{X} \cdot \mathrm{I})_{+}(\mathrm{X} \cdot \mathrm{Y})^{\underline{2}} \mathrm{X} \quad(\mathrm{X}+\mathrm{o}) \cdot(\mathrm{X}+\mathrm{Y})^{\underline{2}} \mathrm{X}$
- By distributivity
- X•(I+Y)롤
$\mathrm{X}+(\mathrm{o} \cdot \mathrm{Y}){ }^{\underline{2} \mathrm{X}}$
- By identity
- X•I $\underline{I}^{2} \mathrm{X} \quad \mathrm{X}+\mathrm{o}^{\frac{2}{2} \mathrm{X}}$
- By identity
- $\mathrm{X}=\mathrm{X}$
$\mathrm{X}=\mathrm{X}$

Prove Simplification 3

- $(\mathrm{X}+\square \mathrm{Y}) \cdot \mathrm{Y} \underline{\underline{2} \mathrm{X} \cdot \mathrm{Y}}$
- By simplification 2
- $(\mathrm{X}+\neg \mathrm{Y}) \cdot((\mathrm{Y}+\neg \mathrm{Y}) \cdot \mathrm{Y})^{\underline{?}} \mathrm{X} \cdot \mathrm{Y} \quad(\mathrm{X} \bullet \neg \mathrm{Y})+((\mathrm{Y} \bullet \neg \mathrm{Y})+\mathrm{Y})^{\underline{?}} \mathrm{X}+\mathrm{Y}$
- By associativity
- $(\mathrm{X}+\neg \mathrm{Y}) \cdot(\mathrm{Y}+\neg \mathrm{Y}) \bullet \mathrm{Y} \xrightarrow{2} \mathrm{X} \cdot \mathrm{Y} \quad(\mathrm{X} \bullet \neg \mathrm{Y})+(\mathrm{Y} \bullet \neg \mathrm{Y})+\mathrm{Y}^{?} \mathrm{X}+\mathrm{Y}$
- By distributivity
- $\left((\mathrm{X} \cdot \mathrm{Y})_{+\neg} \mathrm{Y}\right) \cdot \mathrm{Y}=\underline{ }{ }^{2} \mathrm{X} \cdot \mathrm{Y}$
- By distributivity
- $(\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Y})+(\neg \mathrm{Y} \cdot \mathrm{Y})^{\underline{2}} \mathrm{X} \cdot \mathrm{Y} \quad(\mathrm{X}+\mathrm{Y}+\mathrm{Y}) \cdot(\neg \mathrm{Y}+\mathrm{Y})^{\underline{2}} \mathrm{X}+\mathrm{Y}$
- By associativity, idempotence and complementarity
- $(\mathrm{X} \cdot \mathrm{Y})_{+\mathrm{o}}^{\underline{?} \mathrm{X}} \mathrm{X} \cdot \mathrm{Y} \quad(\mathrm{X}+\mathrm{Y}) \bullet \mathrm{I}^{\underline{2}} \mathrm{X}+\mathrm{Y}$
- By operations with I and o
- $\mathrm{X} \cdot \mathrm{Y}=\mathrm{X} \cdot \mathrm{Y} \quad \mathrm{X}+\mathrm{Y}=\mathrm{X}+\mathrm{Y}$
\qquad

DeMorgan's law (or theorem)

- $\neg(\mathrm{X}+\mathrm{Y})=\neg \mathrm{X} \cdot \neg \mathrm{Y}$
$\neg(X \cdot Y)=_X+\neg Y$

Duality

- A Boolean function is just an expression with a name and a "parameter list" of variables used in the expression
- $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+\mathrm{C}$
- The dual of a function (written $f(A, B, C)^{D}$) is the function with -'s and +'s swapped and I's and o's swapped
- $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})^{\mathrm{D}}=(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C}$

A Bigger Circuit Diagram

- $(\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Y})+(\neg \mathrm{Y} \cdot \mathrm{Y})$

Real Circuits Can Hurt You

Current flows from higher voltages to lower voltages

- $\mathrm{I}=\mathrm{V}_{\mathrm{CC}}, \mathrm{o}=\mathrm{Gnd}$
- Must always hook logic chips up to power and ground
- Never connect the outputs of logic gates together!

Thank You for Your Attention

- Read the lab assignment before you show up for your session!
- Continue reading the book
- Continue homework I

