Lecture 3: All Hail George Boole

CSE 370, Autumn 2007 Benjamin Ylvisaker

Where We Are

- Last lecture: Binary numbers & arithmetic
- This lecture: Boolean algebra
- Next lecture: Playing around w/ Boolean functions
- Homework 1 due Wednesday at the beginning of class
- Lab I this week. Read it before the session starts!

2

Boolean Logic/Algebra

- Notation for writing down precise logical statements (in propositional logic)
- Primitives: true, false, variables
- Connectives: NOT, AND, OR, IMPLIES, ...
- (Almost) all memoryless digital circuits can be seen as Boolean algebra expressions

3

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

Why Do We Care?

- Understanding Boolean logic helps us design "simpler" circuits, both by hand and automatically
- ((A AND B) OR (NOT A AND B)) AND A

4

• Equivalent to: A AND B

Lots of Alternative Notations

- I will mostly use:
 - $\bullet \neg A$ for NOT A
 - A+B for A OR B
 - A•B for AAND B
- Book lists all of the common notations

5

CSE 370, Autumn, 2007, Lecture 3

The Useful Theorems

- Several slides of statements of basic facts about Boolean algebra
- Every theorem comes with a "dual"

7

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

o and I

8

• X+0=X X•I=X

• X+1=1 X•0=0

Idempotence

• X+X=X X•X=X

University of Washington, Comp. Sci. and Eng. 9

CSE 370, Autumn, 2007, Lecture 3

Involution

• ¬¬X=X

University of Washington, Comp. Sci. and Eng.

Complementarity

• X+¬X=I X•¬X=0

University of Washington, Comp. Sci. and Eng. II

CSE 370, Autumn, 2007, Lecture 3

Commutativity

• X+Y=Y+X X•Y=Y•X

University of Washington, Comp. Sci. and Eng. 12

.

Associativity

• (X+Y)+Z = X+(Y+Z) (X•Y)•Z = X•(Y•Z)= X+Y+Z = X•Y•Z

University of Washington, Comp. Sci. and Eng. 13

CSE 370, Autumn, 2007, Lecture 3

Distributivity

• $X \bullet (Y+Z) = (X \bullet Y) + (X \bullet Z)$ $X + (Y \bullet Z) = (X+Y) \bullet (X+Z)$

University of Washington, Comp. Sci. and Eng. 14

Some Simplifications

- $(X \bullet Y) + (X \bullet \neg Y) = X$ $(X + Y) \bullet (X + \neg Y) = X$
- X+(X•Y)=X X•(X+Y)=X
- $(X_{+\neg}Y)$ •Y=X•Y $(X_{-\gamma}Y)$ +Y=X+Y

University of Washington, Comp. Sci. and Eng. 15 CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 1

- $(X \bullet Y) + (X \bullet \neg Y)^{2} X$ $(X + Y) \bullet (X + \neg Y)^{2} X$
 - By distributivity
- $X \bullet (Y \bullet_{\neg} Y) \stackrel{\scriptscriptstyle ?}{=} X$ $X \bullet (Y \bullet_{\neg} Y) \stackrel{\scriptscriptstyle ?}{=} X$
 - By complementarity
- $X \bullet I \stackrel{?}{=} X$ $X + O \stackrel{?}{=} X$
 - By identity
- X=X X=X

University of Washington, Comp. Sci. and Eng. 16 CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 2

• X+(X•Y)≟X	X•(X+Y)≟X
• By identity	
• (X•I)+(X•Y)≟X	(X+0)•(X+Y)≟X
• By distributivity	
• X•(I+Y)≟X	X+(o•Y)≟X
• By identity	
• X•ı≟X	X+o≟X
• By identity	
• X=X	X=X

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 3

17

 (X+¬Y)•Y[≟]X•Y 	(X•¬Y)+Y≟X+Y	
By simplification 2		
• (X+¬Y)•((Y+¬Y)•Y)≟X•Y	$(X \bullet_\neg Y) + ((Y \bullet_\neg Y) + Y) \stackrel{\scriptscriptstyle 2}{=} X + Y$	
 By associativity 		
• (X+¬Y)•(Y+¬Y)•Y≟X•Y	$(X \bullet_\neg Y) + (Y \bullet_\neg Y) + Y \stackrel{\scriptscriptstyle 2}{=} X + Y$	
• By distributivity		
• ((X•Y)+¬Y)•Y ² =X•Y	((X+Y)•¬Y)+Y≟X+Y	
• By distributivity		
• (X•Y•Y)+(¬Y•Y)≟X•Y	$(X+Y+Y)\bullet(\neg Y+Y)\stackrel{?}{=}X+Y$	
• By associativity, idempotence and complementarity		
• (X•Y)+o≟X•Y	(X+Y)•I [≟] X+Y	
• By operations with 1 and 0		
• X•Y=X•Y	X+Y=X+Y	

18

DeMorgan's law (or theorem)

• $\neg(X+Y)=\neg X\bullet_\neg Y$ $\neg(X\bullet Y)=\neg X+\neg Y$

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

Duality

19

- A Boolean function is just an expression with a name and a "parameter list" of variables used in the expression
 - $f(A,B,C) = (A \bullet B) + C$
- The dual of a function (written f(A,B,C)^D) is the function with •'s and +'s swapped and I's and o's swapped

20

• $f(A,B,C)^{D} = (A+B) \cdot C$

A Bigger Circuit Diagram

• $(X \bullet Y \bullet Y) + (\neg Y \bullet Y)$

21

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

Thank You for Your Attention

- Read the lab assignment before you show up for your session!
- Continue reading the book
- Continue homework 1

University of Washington, Comp. Sci. and Eng. 23 CSE 370, Autumn, 2007, Lecture 3