Lecture 3: All Hail George Boole

CSE 370, Autumn 2007 Benjamin Ylvisaker

Where We Are

- Last lecture: Binary numbers & arithmetic
- This lecture: Boolean algebra
- Next lecture: Playing around w/ Boolean functions
- Homework 1 due Wednesday at the beginning of class
- Lab I this week. Read it before the session starts!

2

University of Washington, Comp. Sci. and Eng.

Boolean Logic/Algebra

- Notation for writing down precise logical statements (in propositional logic)
- Primitives: true, false, variables
- Connectives: NOT, AND, OR, IMPLIES, ...
- (Almost) all memoryless digital circuits can be seen as Boolean algebra expressions

3

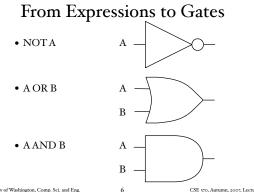
Why Do We Care?

- Understanding Boolean logic helps us design "simpler" circuits, both by hand and automatically
- ((A AND B) OR (NOT A AND B)) AND A
- Equivalent to: A AND B

University of Washington, Comp. Sci. and Eng.

Lots of Alternative Notations

4


- I will mostly use:
 - ¬A for NOT A
 - A+B for A OR B
 - A•B for A AND B
- Book lists all of the common notations

5

University of Washington, Comp. Sci. and Eng.

CSE 370, Autumn, 2007, Lecture 3

CSE 370, Autumn, 2007, Lecture 3

University of Washington, Comp. Sci. and Eng.

The Useful Theorems

- Several slides of statements of basic facts about Boolean algebra
- Every theorem comes with a "dual"

University of Washington, Comp. Sci. and Eng. 7

0 and 1

• X+0=X X•I=X • X+1=I X•0=0

University of Washington, Comp. Sci. and Eng.

Idempotence

9

8

• X+X=X

X•X=X

CSE 370, Autumn, 2007, Lecture 3

Involution

• ¬¬Х=Х IO CSE 370, Autumn, 2007, Lecture 3 University of Washington, Comp. Sci. and Eng. Complementarity • Х+¬Х=і Х•¬Х=о University of Washington, Comp. Sci. and Eng. II CSE 370, Autumn, 2007, Lecture 3 Commutativity • X+Y=Y+X X•Y=Y•X

University of Washington, Comp. Sci. and Eng. 12 CSE 370, Autumn, 2007, Lecture 3

Associativity

• (X+Y)+Z = X+(Y+Z) $(X \bullet Y)\bullet Z = X \bullet (Y \bullet Z)$ = X+Y+Z = $X \bullet Y \bullet Z$

Distributivity

13

CSE 370, Autumn, 2007, Lecture 3

University of Washington, Comp. Sci. and Eng.

University of Washington, Comp. Sci. and Eng.

• $X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z) \qquad X + (Y \cdot Z) = (X+Y) \cdot (X+Z)$

Some Simplifications

14 CSE 370, Autumn, 2007, Lecture 3

- $(X \bullet Y) + (X \bullet \neg Y) = X$ $(X + Y) \bullet (X + \neg Y) = X$
- X+(X•Y)=X X•(X+Y)=X
- $(X_{+\neg}Y) \cdot Y = X \cdot Y$ $(X \cdot \neg Y) + Y = X + Y$

University of Washington, Comp. Sci. and Eng. 15 CSE 370, Autumn, 2007, Lecture 3

Prove Simp	lification 1
------------	--------------

 (X•Y)+(X•¬Y)[⊥]/₌X 	$(X+Y) \bullet (X+\neg Y) \stackrel{\scriptscriptstyle {\scriptscriptstyle \perp}}{=} X$		
• By distributivity			
• X•(Y+¬Y)≟X	X+(Y•¬Y)≟X		
By complementar	ity		
• X•ı≟X	X+o≟X		
• By identity			
• X=X	X=X		
University of Washington, Comp. Sci. and Eng.	16 CSE 370, Autumn, 2007, Lecture 3		

Prove Simplification 2

 • X+(X•Y)[⊥]X • By identity 	$X \bullet (X \bullet Y) \stackrel{\scriptscriptstyle \perp}{=} X$
• (X•I)+(X•Y)≟X	$(X_{+O})^{\bullet}(X_{+}Y)^{\perp}X$
 By distributivity 	
• X•(I+Y)≟X	X+(o•Y)≟X
 By identity 	
• X•ı≟X	X+o [⊥] X
 By identity 	
• X=X	X=X
University of Washington, Comp. Sci. and Eng.	17 CSE 370, Autumn, 2007, Lecture 3

Prove Simplification 3

• (X+¬Y)•Y [⊥] _− X•Y	$(X \bullet_\neg Y) + Y \stackrel{\scriptscriptstyle \perp}{=} X + Y$
 By simplification 2 (X+¬Y)•((Y+¬Y)•Y)²X•Y 	$(X \bullet_\neg Y) + ((Y \bullet_\neg Y) + Y)^2 X + Y$
 By associativity (X+¬Y)•(Y+¬Y)•Y²X•Y 	$(X \bullet_\neg Y) + (Y \bullet_\neg Y) + Y \stackrel{\scriptscriptstyle \perp}{=} X + Y$
 By distributivity ((X•Y)+¬Y)•Y[±]X•Y 	((X+Y)•¬Y)+Y [⊥] X+Y
 By distributivity (X•Y•Y)+(¬Y•Y)≟X•Y 	(X+Y+Y)•(¬Y+Y)≟X+Y
 By associativity, idempo 	tence and complementarity $(X+Y)\bullet_{I} \stackrel{\scriptscriptstyle \perp}{=} X+Y$
 (X•Y)+o[≟]X•Y By operations with 1 and 	(
• X•Y=X•Y	X+Y=X+Y

University of Washington, Comp. Sci. and Eng. 18

DeMorgan's law (or theorem)

• $\neg(X+Y)=\neg X\bullet_\neg Y$ $\neg(X\bullet Y)=\neg X+\neg Y$

University of Washington, Comp. Sci. and Eng.

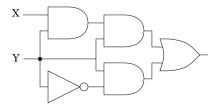
Duality

19

CSE 370, Autumn, 2007, Lecture 3

CSE 370, Autumn, 2007, Lecture 3

- A Boolean function is just an expression with a name and a "parameter list" of variables used in the expression
- $f(A,B,C) = (A \cdot B) + C$
- The dual of a function (written f(A,B,C)^D) is the function with •'s and +'s swapped and 1's and o's swapped


20

• $f(A,B,C)^{D} = (A+B) \cdot C$

University of Washington, Comp. Sci. and Eng.

A Bigger Circuit Diagram

• $(X \bullet Y \bullet Y) + (\neg Y \bullet Y)$

University of Washington, Comp. Sci. and Eng. 21 CSE 370, Autumn, 2007, Lecture 3

	Real	Circu	iits Can I	Hurt You
Va +			lower voltages Vcc, 0=Gnd ust always hook wer and ground	n higher voltages logic chips up to outputs of logic
GN	D			
University	of Washington, Comp. 5	ci. and Eng.	22	CSE 370, Autumn, 2007, Lecture 3

Thank You for Your Attention

- Read the lab assignment before you show up for your session!
- Continue reading the book
- Continue homework 1

University of Washington, Comp. Sci. and Eng. 23