Lecture 5: 2-Level Logic and Canonical Forms

CSE 370, Autumn 2007
Benjamin Ylvisaker

Where We Are

- Last lecture: Truth tables and more functions
- This lecture: 2-level implementations and canonical forms
- Next lecture: Boolean cubes
- Homework I in the grading pipeline; start 2
- How was lab 2?
- Start looking at lab 3
- Tutoring available

Every Function Can Be Implemented in 2 Levels

-A | A | C | F | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

CSE 370, Autumn, 2007, Lecture 5

But We Can Be More Clever

-A | B | C | F | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

We Can Also Look At the o's

$-A$	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Again With the Cleverness

$-A$	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

There Are Lots of Ways to Implement a Function

-... even if we only consider circuits of the 2 level style

- Sometimes we only want one possible representation for a given function
- Makes it easy to decide when two people (or programs) have the same function
- Canonical forms to the rescue!

Minterms and Maxterms

- Row\#	A	B	AB	$\mathrm{A}+\mathrm{B}$	$\overline{\mathrm{AB}}$	$\overline{\mathrm{A}+\mathrm{B}}$	$\mathrm{A} \oplus \mathrm{B}$	$\overline{\mathrm{A} \oplus \mathrm{B}}$
	0	0	0	0	1	1	0	1
O	0	1	0	1	1	0	1	0
2	1	0	0	1	1	0	1	0
3	1	1	1	1	0	0	0	1

- $\left.\mathrm{AB}=\Sigma \mathrm{m}(3)={ }^{2}\right)=(\mathrm{O}, \mathrm{I}, 2)$
$\mathrm{A}+\mathrm{B}=\sum \mathrm{m}(\mathrm{I}, 2,3)=\Pi \mathrm{M}(\mathrm{o})$
$\neg(\mathrm{AB})=\Sigma \mathrm{m}(\mathrm{o}, \mathrm{I}, 2)=\Pi \mathrm{M}(3)$
$\mathrm{A} \oplus \mathrm{B}=\Sigma \mathrm{m}(\mathrm{I}, 2)=\Pi \mathrm{M}(\mathrm{O}, 3)$

Gray Code

- In the coming examples we will use a system called gray code
- Successive numbers differ in exactly y bit position
- $0=000$
$1=001$
$2=011$
$3=010$
$4=110$
$5=111$
$6=101$
$7=100$

Gray Code Successor Function

- Input: Output:
000001
001011
011010
$010 \quad 110$
$110 \quad 111$
$111 \quad 101$
$101 \quad 100$
100000
- We can treat each bit (each column) of the output as its own 3 -variable Boolean function
- The three functions taken together give us the complete successor

Gray Code Successor Function Truth Table

$\begin{array}{ll}\text { - Input: } & \text { Output: } \\ 000 & 001 \\ 001 & 011 \\ 011 & 010 \\ 010 & 110 \\ 110 & 111 \\ 111 & 101 \\ 101 & 100 \\ 100 & 000\end{array}$

$-A$	B	C	D	E	F
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

Gray Code Successor Function(s) in Minterm Notation

- | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 |

$\mathrm{D}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(2,5,6,7)$
$\mathrm{E}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(\mathrm{r}, 2,3,6)$
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma \mathrm{m}(\mathrm{o}, \mathrm{i}, 6,7)$
Order of the variables matters!
$\mathrm{D}(\mathrm{A}, \mathrm{C}, \mathrm{B})=\Sigma \mathrm{m}(\mathrm{I}, 5,6,7)$
$\mathrm{E}(\mathrm{A}, \mathrm{C}, \mathrm{B})=\Sigma \mathrm{m}(\mathrm{I}, 2,3,5)$
$\mathrm{F}(\mathrm{A}, \mathrm{C}, \mathrm{B})=\Sigma \mathrm{m}(0,2,5,7)$

Now in Maxterm Notation

A B	D E F	D(A,B,C)	$=\Pi \mathrm{M}(0,1,3,4)$
000	001	E(A,B,C)	$=\Pi \mathrm{M}(0,4,5,7)$
001	$0 \begin{array}{lll}0 & 1 & 1\end{array}$	F(A,B,C)	$=\Pi \mathrm{M}(2,3,4,5)$
010	110		
0111	0 1 0	Order of the variables matters!	
100	$0 \quad 00$		
$\begin{array}{llll}1 & 0 & 1\end{array}$	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	D (B,A,C)	$=\Pi М(0,1,2,5)$
$\begin{array}{lll}1 & 1 & 0\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$	$\mathrm{E}(\mathrm{B}, \mathrm{A}, \mathrm{C})$	$=\Pi М(0,2,3,7)$
11	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	$\mathrm{F}(\mathrm{B}, \mathrm{A}, \mathrm{C})$	$=\Pi \mathrm{M}(2,3,4,5)$

Binary-Coded Decimal (BCD)

- BCD is an encoding for more directly representing decimal numbers with binary digits
- Each 4 bits represents i decimal digit
- Useful in some numerical programs
- $0=0000$
$5=0101$
$1=0001$
$6=0110$
$2=0010$
$7=0111$
$3=0011$
$8=1000$
$4=0100$
$9=1001$

BCD to Gray Code Converter

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

Lots of Representations

- Boolean algebra expressions/functions
- Digital circuit diagrams
- Truth tables
- Minterm and maxterm notation
- Next time: Boolean cubes \& Karnaugh maps
- BDDs: \{Boolean/Binary\} Decision Diagrams
- Not discussed in 370

Thank You for Your Attention

- Collect your quizzes
- Continue work on homework 2
- Start looking at lab 2
- Continue reading the book

