Lecture 5: 2-Level Logic and Canonical Forms

CSE 370, Autumn 2007 Benjamin Ylvisaker

Where We Are

- Last lecture: Truth tables and more functions
- This lecture: 2 -level implementations and canonical forms
- Next lecture: Boolean cubes
- Homework I in the grading pipeline; start 2
- How was lab 2?
- Start looking at lab 3
- Tutoring available

Every Function Can Be

Implemented in 2 Levels

- A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

University of Washington, Comp. Sci. and Eng

CSE 370, Autumn, 2007, Lecture 5 \qquad

But We Can Be More Clever

-	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

We Can Also Look At the o's

-A | B | C | F | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Again With the Cleverness

-A | B | C | F | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

There Are Lots of Ways to Implement a Function

- ... even if we only consider circuits of the 2 level style
- Sometimes we only want one possible representation for a given function
- Makes it easy to decide when two people (or programs) have the same function
- Canonical forms to the rescue!
\qquad

Minterms and Maxterms

- Row\#		B	AB	A+B	$\overline{A B}$	$\overline{A+B}$	$A \oplus B$	$\overline{\mathrm{A} \oplus \mathrm{B}}$
\bigcirc		0	0	0	1	1	0	1
I		1	0	1	1	0	1	0
2		0	0	1	1	0	1	0
3		1	1	1	0	0	0	1
- AB		$\Sigma \mathrm{m}$			$=\Pi М$	$(0,1,2)$		
A+B		$\Sigma \mathrm{m}$	$(\mathrm{r}, 2,3)$		$=$ ПМ			
$\neg(\mathrm{AB})$		$\Sigma \mathrm{m}$	(0,1,2)		$=\Pi М$			
$\mathrm{A} \oplus \mathrm{B}$		$\Sigma \mathrm{m}$	$(1,2)$		$=\Pi М$	$(\mathrm{o}, 3)$		

\qquad

Gray Code

- In the coming examples we will use a system called gray code
- Successive numbers differ in exactly r bit position
- $0=000$
$1=001$
$2=011$
$3=010$
$4=110$
$5=111$
$6=101$
$7=100$
\qquad

Gray Code Successor Function

- Input: Output:

000	001
001	011
011	010
010	110
110	111
111	101
101	100
100	000

- We can treat each bit (each column) of the output as its own 3-variable Boolean function
- The three functions taken together give us the complete successor

Gray Code Successor Function Truth Table

- Input:	Output:
000	001
001	011
011	010
010	110
110	111
111	101
101	100
100	000

- | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 |

Gray Code Successor Function(s) in Minterm Notation

	B	C	D			D(A,B,C)	$=\Sigma \mathrm{m}(2,5,6,7)$
0	0	0	0	0	1	E(A,B,C)	$=\Sigma \mathrm{m}(\mathrm{I}, 2,3,6)$
0	0	1	0	1	1	F(A,B,C)	$=\Sigma \mathrm{m}(\mathrm{o}, \mathrm{I}, 6,7)$
0	1	0	1	1	0		
0	1	1	0	1	0	Order of the variables matters!	
1	0	0		0	0		
1	0	1	1	0	0	D(A,C,B)	$=\Sigma \mathrm{m}(1,5,6,7)$
1	1	0	1	1	1	E(A,C,B)	$=\sum \mathrm{m}(\mathrm{I}, 2,3,5)$
1	1	1		0	1	F(A,C,B)	$=\Sigma \mathrm{m}(\mathrm{o}, 2,5,7)$

Now in Maxterm Notation

	B					D(A,B,C)	$=\Pi \mathrm{M}(\mathrm{o}, 1,3,4)$
0	0	0	0	0	1	E(A,B,C)	$=\Pi М(0,4,5,7)$
0	0	1	0	1	1	F(A,B,C)	$=\Pi М(2,3,4,5)$
0	1	0	1	1	0		
0	1	1	0	1	0	Order of	he variables m
1	0	0	0	0	0		
1	0	1	1	0	0	D (B,A,C)	$=\Pi М(0,1,2,5)$
1	1	0	1	1	1	E(B,A,C)	$=\Pi М(0,2,3,7)$
1	1	1	1	0	1	F(B,A,C)	$=\Pi \mathrm{M}(2,3,4,5)$

\qquad

Binary-Coded Decimal (BCD)

- BCD is an encoding for more directly representing decimal numbers with binary digits
- Each 4 bits represents I decimal digit
- Useful in some numerical programs
- $0=0000$
$5=0101$
$1=0001$
$6=0110$
$2=0010$
$7=0111$
$3=0011$
8 = 1000
$4=0100$
$9=1001$

BCD to Gray Code Converter

We Can Compact the Table

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

We Can Compact the Table

- $\left.\begin{array}{cccc|cccccccc|cccc}A & B & C & D & E & F & G & H & & A & B & C & D & E & F & G\end{array}\right]$

We Can Compact the Table

Lots of Representations

- Boolean algebra expressions/functions
- Digital circuit diagrams
- Truth tables
- Minterm and maxterm notation
- Next time: Boolean cubes \& Karnaugh maps
- BDDs: \{Boolean/Binary\} Decision Diagrams
- Not discussed in 370
\qquad

Thank You for Your Attention

- Collect your quizzes
- Continue work on homework 2
- Start looking at lab 2
- Continue reading the book

