
Lecture 8:
Combinational

Verilog
CSE 370, Autumn 2007

Benjamin Ylvisaker

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Where We Are

• Last lecture: Minimization with K-maps

• This lecture: Combinational Verilog

• Next lecture: ROMs, PLAs and PALs, oh my!

• Homework 3 ongoing

• Lab 2 done; lab 3 next week

2

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Specifying Circuits
• Schematics

• Structural description

• Build more complex circuits using hierarchy

• Large circuits are unreadable

• HDLs (Hardware description languages)

• Not conventional programming languages

• Very restricted parallel languages

• Synthesize code to produce a circuit

3

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Quick History Lesson
• Abel (~1983)

• Developed by Data-I/O

• Targeted to PLDs

• Verilog (~1985)

• Developed by Gateway (now part of Cadence)

• Syntax similar to C

• Moved to public domain in 1990

• VHDL (~1987)

• DoD sponsored

• Syntax similar to Ada

4

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Verilog and VHDL Dominant
• Both “IEEE standard” languages

• Most tools support both

• Verilog is “simpler”

• Less, more concise syntax

• VHDL is more structured

• More sophisticated type system

• Better modularity features

5

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Simulation and Synthesis
• Simulation

• “Execute” a design with some test data

• Synthesis

• Generate a physical implementation

6

SynthesisHDL
Description

Gate or
Transistor
Description

Simulation Simulation Physical
Implementation

Functional
Validation

Functional/
Timing

Validation

Real
Chip!

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Simulation and Synthesis (cont’d)

• Simulation

• Model circuit behavior

• Can include timing estimates

• Allows for easier design exploration

• Synthesis

• Converts HDL code to “netlists”

• Can still simulate the generated netlists

• Simulation and synthesis in the CSE curriculum

• 370: Learn simulation

• 467: Learn something about synthesis

7

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Simulation
• You provide an environment

• Use non-circuit constructs (Active-HDL
waveforms, random number generators, etc)

• Can write arbitrary Verilog code

8

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Specifying Circuits in Verilog
• There are three major styles

• Instances ‘n wires

• Continuous assignments

• “always” blocks

9

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

“Structural” “Behavioral”
wire E;
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

wire E;
assign E = A & B;
assign Y = ~ C;
assign X = E | Y;

reg E, X, Y;
always @ (A or B or C)
begin
 E = A & B;
 Y = ~C;
 X = E | Y;
end

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Data Types
• Values on a wire

• 0, 1, x (unknown or conflict), z (unconnected)
• Vectors

• A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]
• Interpreted as an unsigned binary number
• Indices must be constants

• Concatenation
• B = {A[3], A[3], A[3], A[3], A[3:0]};
• B = {4{A[3]}, A[3:0];

• Style: good to use unnecessary size specs sometimes
• a[7:0] = b[7:0] + c[7:0];

• Built-in reductions: C = &A[5:7];

10

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Data Types That Do Not Exist

• structures (records)

• Pointers

• Objects

• Recursive types

• (Remember, Verilog is not C or Java or Lisp
or ...)

11

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Numbers

• Format: <sign><size><base format><number>
• 14

• Decimal
• -4’b11

• 4-bit 2’s complement of 0011
• 12’b000_0100_0110

• 12 bit binary number (_’s ignored)
• 12’h4Ab

• 12 bit hexadecimal number

12

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Operators

13

Similar to C operators

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Two Abstraction Mechanisms

• Modules

• More structural

• Heavily used in 370 and “real” Verilog code

• Functions

• More behavioral

• Used to some extent in “real” Verilog, but not
much in 370

14

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Basic Building Blocks: Modules
• Instantiated, not called

• Illegal to nest module defs

• Instances “execute” in parallel

• Wires are used for connections

• and, or, not built-in primitive modules

• List output first

• Arbitrary number of inputs next

• Names are case sensitive

• Cannot begin with number

• // for comments

15

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

// first simple example
module smpl(X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 wire E;
 and g1(E,B,B);
 not g2(Y,C);
 or g3(X,E,Y);
endmodule

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Module Ports
• Modules interact with the rest of

a design through ports

• input

• output

• inout

• Same example with continuous
assignments:

16

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

// first simple example
module smpl(X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 assign X = (A&B)|~C;
 assign Y = ~C;
endmodule

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Bigger Structural Example
• module xor_gate (out,a,b);

 input a,b;
 output out;
 wire abar, bbar, t1, t2;
 not inva (abar,a);
 not invb (bbar,b);
 and and1 (t1,abar,b);
 and and2 (t2,bbar,a);
 or or1 (out,t1,t2);
endmodule

17

bbar

t2

t1
abar

b
invb a

and2

a
inva b

and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

8 built-in gates:
and, or, nand, nor,
buf, not, xor, xnor

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Behavioral Full Adder

• module full_addr (Sum,Cout,A,B,Cin);
 input A, B, Cin;
 output Sum, Cout;
 assign {Cout, Sum} = A + B + Cin;
endmodule

18

A
B
Cin Cout

SumAdder

{Cout, Sum} is a concatenation

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Behavioral 4-bit Adder

• module add4 (SUM, OVER, A, B);
 input [3:0] A;
 input [3:0] B;
 output [3:0] SUM;
 output OVER;
 assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

19

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Continuous Assignment
• Continuously evaluated

• Think of them as collections of logic gates

• Evaluated in parallel

20

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Hierarchy Example: Comparator

• module Compare1 (Equal, Alarger, Blarger, A, B);
 input A, B;
 output Equal, Alarger, Blarger;
 assign Equal = (A & B) | (~A & ~B);
 assign Alarger = (A & ~B);
 assign Blarger = (~A & B);
endmodule

21

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

4-bit Comparator

• // Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
 input [3:0] A4, B4;
 output Equal, Alarger, Blarger;
 wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;

 Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
 Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
 Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
 Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3]);

 assign Equal = (e0 & e1 & e2 & e3);
 assign Alarger = (Al3 | (Al2 & e3) |
 (Al1 & e3 & e2) |
 (Al0 & e3 & e2 & e1));
 assign Blarger = (~Alarger & ~Equal);
endmodule

22

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Sequential assigns don’t make
any sense

• assign A = X | (Y & ~Z);

assign B = W | A;

assign A = Y & Z;

• You can’t reassign a variable with continuous
assignments

23

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Always Blocks

• reg A, B, C;

always @ (W or X or Y or Z)
begin
 A = X | (Y & ~Z);
 B = W | A;
 A = Y & Z;
 if (A & B) begin
 B = Z;
 C = W | Y;
 end
end

24

Variables that appear
on the left hand side in
an always block must
be declared as “reg”s

Sensitivity list

Statements in an always
block are executed in
sequence

All variables must be assigned on
every control path!!!
(otherwise you get the dreaded
“inferred latch”)

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Functions
• Functions can be used for combinational logic

that you want to reuse

• module and_gate (out, in1, in2);
 input in1, in2;
 output out;

 assign out = myfunction(in1, in2);

 function myfunction;
 input in1, in2;
 begin
 myfunction = in1 & in2;
 end
 endfunction
endmodule

25

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Verilog Tips

• Do not write C-code
• Think hardware, not algorithms

• Verilog is inherently parallel

• Compilers don’t map algorithms to circuits well

• Do describe hardware circuits
• First draw a dataflow diagram

• Then start coding

• References
• Tutorial and reference manual are found in ActiveHDL help

• And in today’s reading assignment

• “Starter’s Guide to Verilog 2001” by Michael Ciletti

• copies for borrowing in hardware lab

26

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Thank You for Your Attention

27

University of Washington, Comp. Sci. and Eng. CSE 370, Autumn, 2007, Lecture 8

Thank You for Your Attention

• Read lab 2

• Continue homework 2

• Continue reading the book

28

