Welcome to CSE370

Instructor: Bruce Hemingway
TAs: Brian DeRenzi, Jacob Nelson and Firat Kiyak Lab Specialist: Karl Koscher

Class web
http://www.cs.washington.edu/education/courses/370/07wi/
Add yourself to the mailing list \rightarrow see the web page
Today's lecture
Course overview: The Digital Age

CSE370, Lecture 1

Text

Contemporary Logic Design (2nd

Randy H. Katz, U. California, Berkeley and Gaetano Borriello, U. Washington, Seattle

CSE370, Lecture 1

Workload

- The course consists of the following elements:
- Lectures: There will be 26 lectures. Attendance and participation at all of them is strongly
- Laboratory Assignments: There will be a total of nine (9) laboratory assignments (there will not be a laboratory meeting during the first week. Although you'll be able to use the lab
all week, attendance at one of the scheduled times is very important as that is when the TAs will be available. We will work hard to ensure that the laboratory assignments take more than the three hour sessions to complete. LLaboratory assignments will be closely tied
to the written homework assignments and are intended to give you a taste of working with to the written homework assignments and are intended to give you a taste of working we session for which you are registered. With permission of the TA, you can attend the othe
Reading: We will cover most of the Contemporar
Readings will be part of each weekly assignment.
- Assignments: Weekly problem sets involving digital logic analysis and design, to be solved larger design project and will span two weeks.
- In-class Quizzes: Four short scheduled in-class quizzes, throughout the quarter. MAKE-UPS!

Final exam:
CSE370, Lecture 1

Grading

- We will compute your course grade as follows:
- 30\%: weekly assignments
- 20\%: laboratory assignments
- 20\%: in-class quizzes
- 30\%: final exam
- Your grade will be determined by how well you understand the material as evidenced by the assignments, labs and tests. We would like nothing better than to give the entire class a 4.0

CSE370, Lecture

Homework and Quizzes

- Assignments
- Your weekly assignments are due at the beginning of class on the assigned due date. Assignments handed in during or immediately after class will inccur a 10% te. Assignments dize your assignment 10% per day for each additional eekend, 30% if turned in on Monday, etc.
- Assignment problems will sometimes be graded on a random basis. To get full credit for an assignment, you must, of course, turn-in solutions for each assigned problem. Only a subset of the roblebems will actually be graded in
detail. You will not know in advance which problems this will be - so make sur detail. You will no
to do all of them.
- Please review the assignment solutions carefully before questioning a grade with
either the instructor or the teaching assistants.
- Quizzes
- There will be no makeup for missed quizzes. If you miss a quiz, you will receive a score of zero so please plan your schedule carefully. We do not have the resources to be able to give make-up quizzes. Please review the quiz solutions
carefully before questioning a grade with either the instructor or the teaching assistants.

SE370, Lecture

Collaboration and Cheating

- Collaboration
- Homework: Unless specifically stated otherwise, we encourage collaboratio nomework, provided (1) You spend at least 15 minutes on each and every very problem, inefore discussing it with others, and (2) You write up each and very problem in your own writing, , sing your own words, and understand the
olution fully. Copying someone else's homework is cheating (see below), as is copping the homework from another source (prior year's notes, etc.). The quiz
pobilems will be very similar to the homework problems; if you truly understand problems will be verry similar to the homework problems; if you, trully understand
he homework, then the quizzes will be easy. If you have copied the

- Cheating
- Cheating is a very serious offense. If you are caught cheating, you can expect
initiation of a cheating case in the University system. Basically, cheating is insult to the instructor, to the department and major program, and most
importantly, to you. If you feel that you are having a problem with the material,
or don't have time to finish an assignment, or have any number of other reasons r don't have time to forish an assignment or have any number of other reasons
o cheat, then talk with the instructor. Just don't heat. To avoid crating o cheat, then talk with the instructor. Just don't cheat. To avoid creating can post general questions about interpretation and tool use but limit your send the instructor email describing the situation.
CSE370, Lecture

Why you are here

- Required class

- To learn about digital design
- Design process and techniques
- Exposure to new ideas
- Emergent behavior
\leftrightarrow Complex functions from simple elements
\Rightarrow With only NORs and wire you can build a computer
Parallel computation
\Rightarrow Digital hardware is inherently paralle

The Digital Age

- Computing is in its infancy
- Processing power - Doubles every 18 months

Disk capacity

- Doubles every 12 months
\Leftrightarrow Factor of 1000 / decade
- Optical fiber transmission capacity
\Leftrightarrow Doubles every 9 months
\Rightarrow Factor of 10,000 / decad
- The bases are mathematics and switches
- How did we get here?

Diophantus of Alexandria b. $\sim 200 \mathrm{BCE}$

DIOPHANTI Known as the "father of algebra" alexandrini ARITHMETICORVM
ei de nvmeris mvitancyil
Mibr vevs

CSE370, Lecture

Arithmetica is a collection of 130 problems that gives numerical solutions of determinate equations which have a unique solution, and indeterminate equations.
The Later Alexandrian Age was a time when mathematicians were discovering many ideas that lead to
our concept of mathematics today.
ur concept of mathematics today.

850 AD

- Abu Ja'far Muhammad ibn Musa alKhwarizmi
- Lived in Baghdad, 780 to 850 AD. One of the first to write on algebra (using words, not letters) and also Hindu-Arabic numbers (1, 2, 3, ...).
- From his name and writings came the words "algebra" and "algorithm".
- Book:Hisab al-jabr w'al muqabala

1854

- George Boole
- Boolean algebra
- Number system with 2 values
- $0 / 1 \Leftrightarrow$ false/true
- Do math on logic statements
- 3 operations (NOT, AND, OR)

Boolean algebra

NOT		AND		
A	Out	A	B	Out
0	1	0	0	0
1	0	0	1	0
		1	0	0
		1	1	1

CSE370, Lecture 1

OR		
A	B	Out
0	0	0
0	1	1
1	0	1
1	1	1

Computer Hardware

- Components

Adder

1945

- John von Neumann - First stored computer program
- A sequence of operations

Read from memory

- Operate using logic gates
- Store result into memory

[^0]

Other contributions: Quantum Mechanics Cellular Automata Game Theory

Stored Programs = Software

Bill Gates and Paul Allen, Lakeside, 1968
CSE370, Lecture 1

Hardware + Software

csemotedre

1977 and 1981

- Apple II and IBM PC
- The first microcomputers

CSE370, Lecture 1

More modern examples

- Computing everywhere Wireless/wired networking
- Wearable devices

Smart sensors

CSE370, Lecture 1

Terminology

- Digital: Discrete-valued Usually binary
- Transistor switches have 2 states (on/off)
- Combinational: Without memory - Output depends on present input
- Sequential: With memory (state) - Output depends on present and/or past inputs
- Synchronous: Values change at discrete timesteps
- Synchronous \leftrightarrow clocked

[^1]
What you will learn in CSE370

- Physical devices (transistors, resistors, wires)
- Switches
- Truth tables
- Boolean algebra
- Combinational logic
- Sequential logic
- State in digital systems
- Finite-state machines
- Hardware description language
- Register-transfer description
- Concurrent abstract specifications CSE370, Lecture 1

[^0]: CSE370, Lecture

[^1]: SEE370, Lecture

