

Design Optimization Using Warp™ Synthesis Directives

Introduction
Cypress PLDs can implement a wide range of design densi-
ties and speeds because they have a flexible and clean archi-
tecture. Warp is Cypress’s sophisticated PLD design tool that
takes advantage of this flexibility and gives designers a num-
ber of techniques for optimizing design performance.

This application note introduces synthesis directives and
shows the tradeoffs that can be made to gain the best possi-
ble densities and speeds for VHDL or schematic implemen-
tations. It discusses various Warp synthesis directives, their
formats and the purpose of each directive.

Synthesis Directives
Synthesis directives may be used to influence the implemen-
tation of a design. They are used in an iterative fashion to
refine, improve, or constrain the results of synthesis. Synthe-
sis directives may be applied to components that have been
either instantiated in a schematic or inferred by the synthesiz-
er from VHDL code.

Design Flow and Strategy for Using Directives

After synthesis and fitting the design may fit in the desired
device and meet timing goals. In this case the design is com-
plete and no directives are necessary. If, however, after the
initial iteration of synthesis and fitting, the design does not fit
or meet timing goals, the design may need tuning (Figure 1).

Tuning is the process of (1) identifying and applying an appro-
priate directive that may help to reduce resource utilization or
realize timing targets, (2) resynthesizing and fitting the de-
sign, and (3) verifying that the design meets area and speed
goals. In some cases, this tuning process may have to be
repeated in order to compare multiple implementations of the
design.

Table 1, shown on the next page can be used to select an
appropriate directive for tuning a design. Some directives are
functional directives and can have a significant impact on the
area and speed of a design while others are used for docu-
mentation purposes. The table summarizes the available di-
rectives and whether they can be used for area optimization,
speed optimization, specific control, or documentation.

Scope and Inheritance

Each of the synthesis directives has a scope: some are in-
tended for signals, others for components. Some of the direc-
tives also have an inheritance. A directive intended for a sig-
nal can be placed on an architecture or entity so that all
signals defined in that architecture or entity inherit that direc-
tive. This is called hierarchical inheritance. Not all directives
have an inheritance, however. Non-hierarchical directives are
meant for the exact object to which they are attached and will
be ignored if not applied to the appropriate object. Hierarchi-
cal directives have the following order of precedence (from
least to greatest):

• entity

• architecture

• component declarations

• component instantiations

• signals

Timing &
area goals

met?

Synthesis

Fitter or P & R

START

Schematic VHDL

Finish

Figure 1.

No

Yes

Use Directives

Results
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
April 1994

Design Optimization Using Warp Synthesis Directives
Thus, a hierarchical directive placed on an architecture is
overridden by a directive placed on a signal within that archi-
tecture. In other words, a hierarchical directive intended for a
signal, if placed on an architecture, serves as a default for all
signals within that architecture. Likewise, a hierarchical direc-
tive placed on a component instantiation overrides a directive
placed on an architecture. This allows for an occurrence of a
component to have a different directive value than the default
directive for all components.

Applying Directives

Some directives are available via the command line or Warp
GUI. Warp also provides three other methods for applying
synthesis directives: with VHDL attributes, with schematic at-
tributes, or with a top-level control file. Values of directives
passed through the GUI or the command line act as default
values. Directives applied using VHDL attributes, schematic
attributes, or the control file override default values. The only
exceptions are the part_name and order_code directives.
The GUI or command line will override all part_name and
order_code attributes.

Using the GUI or Command Line

Certain directives may be controlled from the GUI or com-
mand line. An example of this is the goal attribute which can
be selected to provide area or speed optimization. If speed is
selected, then it becomes the default value. If a component
has a VHDL or schematic goal attribute applied to it, however,
and the value of the attribute is area, then the speed value is
overridden with the area value for that component.

Using VHDL Attributes

VHDL permits the use of user-defined attributes to attach in-
formation to objects. Warp has thus created a user-defined
(as opposed to predefined) attribute for each directive. This

permits a directive to be applied to an object with the use of
an attribute. The general syntax of an attribute used to place
a directive on an object is of the form:

ATTRIBUTE directive_name OF object: class IS value;

Such attributes are placed in the appropriate declarative re-
gion of the VHDL code, typically in either the entity declarative
region or the architecture body declarative region. The object
is the actual name or identifier of the entity, architecture, com-
ponent instantiation label, or signal. Class is used to identify
the class of the object (i.e., entity, architecture, or component
instantiation label, or signal).

Using Schematic Attributes

Directives may be applied to objects in schematics (with
Warp3®) using attributes by selecting the appropriate object
and choosing Attribute from the Add menu. After selecting
Add->Attribute, a dialog box appears in which the user may
enter the directive in the form:

directive_name=value

The goal directive for area or speed optimization is not ap-
plied as an attribute. It is selected during the addition or mod-
ification of an LPM symbol. The directive selected here over-
rides the command line or GUI switch.

Using a Control File

A control file provides a common location for setting global
synthesis directives for a given design. Cypress prefers the
use of the control file since it gives the user detailed control
over many aspects of synthesis while maintaining a device
and vendor independent VHDL source file. In the case of con-
flict, directives placed in a control file override directives spec-
ified with VHDL or schematic attributes. Only one control file
is allowed per design and the file should have the same base
name as the top level design file name. Each directive may be
applied in the control file using a syntax similar to that of at-
tributes:

attribute directive_name [of] object[:class] is value[;]

The words in square brackets [] are optional and are simply
ignored. Specifying the class is also optional. Warp also sup-
ports the ‘*’ wild-card character that allows pattern matching.

Area Optimization
This section describes the directives and techniques required
to successfully implement a logic design using the minimum
device resources.

The goal Directive

ATTRIBUTE goal OF architecture_name : ARCHITEC-
TURE IS AREA;

The goal value of area indicates that all modules inferred from
VHDL operators will be optimized for area. The Warp synthe-
sizer will select an implementation that is optimized to use the
minimum device resources.

Scope

Target: Architecture or Entity

Inheritance: None

Related Command-Line-Option: -yga

Applicable to: All Devices

Table 1. Available Synthesis Directives

Directive

Used for

area speed control doc

goal x x

state_encoding x x

synthesis_off x x x

dont_touch x x x

no_latch x x x

lab_force x

pin_avoid x

polarity x

sum_split x

node_num x

ff_type x

opt_level x x x

part_name x x x

order_code x x x

pin_numbers x x x
2

Design Optimization Using Warp Synthesis Directives
The synthesis_off Directive

ATTRIBUTE synthesis_off OF signal_name : SIGNAL IS
true;

When the synthesis_off directive is set to true, a signal is
made into a factoring point for logic equations. This directive
keeps the signal from being substituted out during the optimi-
zation process.

Synthesis_off is useful for the following reasons:

• It gives the user control over which equations or sub-ex-
pressions need to be factored into a node.

• It provides better results for designs where a signal with a
large functionality is being used by many other signals. If
left alone, the fitter would collapse all the internal signals
(which is desirable in many cases) and may drive the de-
sign's resource requirements beyond the available limits.

• It helps reduce compile time for designs which have a lot
of “signal redirection” (signals getting inverted or reas-
signed to other signals).

• This directive provides the logic optimizer better control
over the optimization process, by reducing the number of
signals it needs to process.

By using the synthesis_off directive, the user can assign the
commonly used signal to a node and improve the resource
utilization.

A side effect of using the synthesis_off directive is that the
design will now take an extra pass through the array. The extra
pass is usually required anyway, if more than 16 PTs are re-
quired.

This directive is recommended only on combinatorial signals.
Registered signals are assigned to a node by natural factor-
ing, and the synthesis_off directive on these signals is redun-
dant.

This directive can be associated with signals declared both in
VHDL and schematics. This directive allows the designer to
force multiple passes through logic cells for optimal density.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: -v#

Applicable to: All devices

The following example requires 37 Macrocells and 376
unique product terms in a CY7C374i without using the
synthesis_off directive (Figure 2). This same design requires
22 Macrocells and 146 unique product terms in a CY7C371i
with the synthesis_off directive (Figure 3).

Example:

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all;

entity cpldadd is port(

a: in std_logic_vector(7 downto 0);

b: in std_logic_vector(7 downto 0);

c: in std_logic_vector(7 downto 0);

sum: out std_logic_vector(7 downto 0));

end cpldadd;

architecture areacpldadd of cpldadd is

signal intsum: std_logic_vector(7 downto 0);

attribute synthesis_off of intsum:signal is true;

begin

intsum <= a + b;

sum <= intsum + c; -- without synthesis_off (a+b) would
end areacpldadd; --be substituted in the sum equation

The ff_type Directive

ATTRIBUTE ff_type OF signal_name : SIGNAL IS ff_opt;

The ff_type value of ff_opt tells Warp to synthesize the
signal_name to the optimum flip-flop type for the logic imple-
mented. A flip-flop is chosen based on the fewest resources
required to implement the logic function. For instance, a
D-type flip-flop may be chosen for register data storage func-
tions, while a T-type (toggle) flip-flop may be chosen for
counters. This option is recommended for all designs unless
the designer has specific requirements to force the use of a
different flip-flop type. The VHDL attribute is placed in the
architecture body declarative region.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: -fo

Applicable to: All Devices

Figure 2. Without Synthesis_off directive

intsum

adder

sum

a (7:0)

b (7:0)

c (7:0)
adder

intsum
adder

adder
sum

a (7:0)

b (7:0)

c (7:0)

Figure 3. With Synthesis_off directive
3

Design Optimization Using Warp Synthesis Directives
The state_encoding Directive

The state_encoding directive specifies the internal encoding
scheme for values of an enumerated type.

ATTRIBUTE state_encoding OF type-name: TYPE IS
value;

The legal values of the state_encoding directive are:

• sequential

• one_hot_zero

• one_hot_one

• gray

When the state_encoding directive is set to sequential, the
internal encoding of each value of the enumerated type is set
to a sequential binary representation. The first value in the
type declaration receives an encoding of 00; the second, 01;
the third, 10; the fourth, 11; and so on. Sufficient bits are al-
located to the representation to encode the number of enu-
merated type values included in the type declaration. When
the state_encoding directive is set to one_hot_zero, the inter-
nal encoding of the first value in the type definition is set to 0.
Each succeeding value in the type definition has its own bit
position in the encoding. That bit position is set to 1 when the
state variable has that value. Thus, a one_hot_zero encoding
of an enumerated type with N possible values requires N – 1
bits. For example, if an enumerated type had four possible
values, three bits would be used in its one_hot_zero encod-
ing. The first value in the type definition would have an encod-
ing of 000. The second would have an encoding of 001. The
third would have an encoding of 010. The fourth would have
an encoding of 100. One_hot_one state encoding works sim-
ilarly to one_hot_zero, except that no zero encoding is used;
every value in the enumerated type has a bit position, which
is set to one when the state variable has that value. Thus, a
one_hot_one encoding of an enumerated type with N possi-
ble values requires N bits. For example, if an enumerated type
had four possible values, four bits would be used in its
one_hot_one encoding. The first value in the type definition
would have an encoding of 0001. The second would have an
encoding of 0010. The third would have an encoding of 0100.
The fourth would have an encoding of 1000. When the
state_encoding directive is set to gray, the internal encoding
of successive values of the enumerated type follows a Gray
code pattern, where each value differs from the preceding
one by only one bit.

Scope

Target: Type

Inheritance: None

Related Command-Line-Option: None

Applicable to: All Devices

Examples:

type state is (s0,s1,s2,s3);

attribute state_encoding of state:type is one_hot_zero;

The first statement in this example declares an enumerated
type, called state, with four possible values. The second state-
ment specifies that values of type state are to be encoded
internally using a one_hot_zero encoding scheme. The VHDL
attribute is placed in the architecture body declarative region.

Speed Optimization
This section describes the synthesis directives that may be
used in optimizing a design for performance. In most cases,
the techniques for speed optimization are device dependent.

The goal Directive

ATTRIBUTE goal OF architecture_name: ARCHITEC-
TURE IS speed;

The goal attribute value of speed indicates that all arithmetic
modules inferred from VHDL operators will be optimized for
speed. The Warp synthesizer will select an implementation
that is optimized to achieve the best performance. This is a
good first step to take when optimizing a design for perfor-
mance. To demonstrate the goal directive, observe the perfor-
mance delta in the following 8-bit adder example implement-
ed in a FLASH371i CPLD:

Example:

library ieee;

use ieee.std_logic_1164.all;

use work.std_arith.all;

entity add8_a is port(

a, b: in std_logic_vector (7 downto 0);

sum: out std_logic_vector (7 downto 0));

end add8_a;

architecture archadd8_a of add8_a is

attribute goal of archadd8_a: architecture is speed;

begin

sum <= a + b;

end archadd8_a;

The maximum delay with the goal attribute set to area is 33
ns and with the goal attribute set to speed is 27 ns.

Directives for Specific Control
This section describes specific control features of the Warp
synthesis tool.

The ff_type Directive

 ATTRIBUTE ff_type OF signal_name : SIGNAL IS ff_d;

 or command line option: -fd

The ff_type value of ff_d tells Warp to synthesize the
signal_name using a D-type flip-flop. This will force the syn-
thesizer to use a D-type flip-flop to generate signal_name.
This directive will typically only be used if the Warp synthesis
tool is not using the D-type flip-flop where the designer in-
tends.

 ATTRIBUTE ff_type OF signal_name : SIGNAL IS ff_t;

or command line option: -ft

The ff_type value of ff_t tells Warp to synthesize the
signal_name using a T-type flip-flop. This will force the syn-
thesizer to use a toggle flip-flop to generate signal_name.
This directive will typically only be used if the Warp synthesis
tool is not using a toggle flip-flop, which the designer intends
for functional reasons.
4

Design Optimization Using Warp Synthesis Directives
The lab_force Directive

ATTRIBUTE lab_force OF signal_name : SIGNAL IS
“string”;

This attribute will force signal_name into the logic block spec-
ified by string. It can be used for floor planning purposes or
when the user needs direct control of how product terms are
allocated in a logic block. This directive should only be used
if the user is intimately familiar with the target CPLD architec-
ture. This directive can cause routing difficulties if logic is
placed in an area that can block routing paths. The VHDL
attribute is placed in the architecture body declarative region.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: None

Applicable to: CPLD Devices Only

Examples:

ATTRIBUTE lab_force OF ff_Q: SIGNAL IS “B2”;

This will force the signal ff_Q to the lower half of logic block B
in a FLASH370i device.

ATTRIBUTE lab_force OF ff_Q:signal IS “B1”;

The signal ff_Q is forced to the upper half of logic block B.

The no_factor Directive

The no_factor directive prevents logic factoring within the
Warp synthesis engine.

ATTRIBUTE no_factor OF signal_name: SIGNAL is value;

During the optimization phase, the Warp synthesis engine,
aliases signals which have identical drivers (equations). This
feature can be useful if the design constraints require certain
identical logic to be duplicated or if the logic factoring algo-
rithm is being overaggressive. The VHDL attribute is placed
in the architecture body declarative region.

Scope

Target: Signal

Inheritance: Hierarchical

Related-Command-line-option: -fl

Applicable to: All Devices

Examples:

attribute no_factor of my_signal: signal is true;

This example prevents the signal my_signal from being
aliased or from being factored.

attribute no_factor of my_architecture:architecture is true;

This example prevents all signals in my_architecture and its
sub-architectures from being aliased or factored.

The no_latch Directive

The no_latch directive prevents latches from being synthe-
sized automatically for the signal in question.

ATTRIBUTE no_latch of signal_name: SIGNAL IS value;

Normally, when exhaustive optimization is enabled (with the
-o2 option), Warp tries to synthesize latches where possible
for the FLASH370i family.

The following example creates a latch with y as the enable
and a as the latched data for the equation x:

if (y = '1') then

 x <= a;

else

x <= x;

end if;

Creating a latch in this case saves a product term for the x
equation; however, this has certain other side-effects that
might not be desirable:

• If the synthesizer also produced asynchronous resets/pre-
sets for the enable, this will cause more global resources
to be used.

• Creating a latch might have caused a slower design and
introduced setup/hold problems.

Using the no_latch directive would cause Warp to create sim-
ply a signal with a combinatorial delay.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: -yl

Applicable to: FLASH370i Devices Only

Example:

attribute no_latch of x: signal is true;

In this example, the directive causes latch detection to be
disabled for signal x.

The node_num Directive

ATTRIBUTE node_num OF signal_name : signal IS inte-
ger;

The node_num directive locks a signal to a specific location
in the target device. This directive overrides the default place-
ment that the Warp tool would assign automatically. This di-
rective applies to any combinatorial or sequential node within
the design.

Scope

Target: Signal

Inheritance: None

Related Command-Line-Option: -fn [n=node location]

Example:

library ieee;

use ieee.std_logic_1164.all;

ENTITY node_num_test IS PORT (

clk, ff_D: IN STD_LOGIC; -- Flip-flop clock, D-input

 ff_Q: OUT STD_LOGIC); -- Flip-flop Q output

ATTRIBUTE part_name of node_num: ENTITY IS
“C374i”;

ATTRIBUTE node_num OF ff_Q:SIGNAL IS 398;

END node_num_test;

ARCHITECTURE arch_node_num_test OF node_num_test
IS
5

Design Optimization Using Warp Synthesis Directives
BEGIN

PROCESS

BEGIN

WAIT UNTIL clk = '1';

ff_Q <= ff_D; -- Generate output

END PROCESS;

END arch_node_num_test;

The previous code segment ensures the signal ff_Q is gener-
ated from the macrocell driving node 398 in a CY7C374i de-
vice. Node 398 refers to the first macrocell in logic block #1 in
a CY7C374i. Refer to the FLASH370i appendix in the Warp
Reference manual for specific node numbers. This directive
is similar to the lab_force attribute but provides even more
control.

The sum_split Directive

ATTRIBUTE sum_split OF signal_name : SIGNAL IS
value;

The FLASH370i can generate 16 product terms in one pass
through the array. To implement an equation with more than
16 product terms the design has to take an extra pass. The
value of the sum_split attribute can be balanced or cascaded.
The default value is balanced. Use the balanced value if reli-
able balanced timing is desired. Figure 4 illustrates the bal-
anced sum split concept:

ATTRIBUTE sum_split OF sum_signal: SIGNAL IS balanced;

The cascaded method (Figure 5) uses only two macrocells to
implement an equation. There is no control over which prod-
uct term is assigned to which macrocell. The signals that are
not split into macrocell #1 will arrive at macrocell #2 sooner,
thereby making the timing for the outputs different based on
different arrival times which may result in a combinatorial
glitch. If these output signals are registered, then of course
the timing generated at the outputs is the same.

ATTRIBUTE sum_split OF sum_signal: SIGNAL IS
cascaded;

Which sum_split method to use depends on the area con-
straints and how the design is implemented. Use the bal-
anced method first and then the cascaded, if the design does
not fit using balanced method.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line Option: None

Applicable to: CPLD Devices only

The polarity Directive

ATTRIBUTE polarity OF signal_name : SIGNAL IS value;

The polarity directive is used to select polarity for internal sig-
nals in a design. There are two options for polarity, pl_keep
and pl_opt. The pl_keep option will instruct the Warp compiler
to keep the polarity of a signal as currently specified in the
design. The pl_keep option is useful to instruct the compiler
about the desirable output sense of an internal signal at pow-
er up. When a circuit is initialized, it may be desirable to pro-
vide an output as a “1” or “0” and maintain this condition with-
out the compiler changing the sense for optimization reasons.
In another case, it may be desirable to keep signal senses in
order to debug designs in the simulator without being con-
cerned about compiler-induced internal inversions. In most
cases, however, the pl_opt is the best choice. This option al-
lows the compiler to change the sense of internal signals to
provide the best optimization for a design.

Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: -fp or -fk

Applicable to: All PLDs

The opt_level Directive

The opt_level directive instructs Warp on the amount of effort
that should be spent optimizing certain signals.

ATTRIBUTE opt_level OF signal_name: SIGNAL IS
integer;

The integer represents the amount of effort. Currently, there
are three levels of effort (0, 1 and 2). An opt_level of 0 in-
structs Warp to turn off all optimization on the signal specified.
This directive is also passed along to the PLD/CPLD fitters
which do the same thing. An opt_level of 1 causes Warp to
perform a simple and quick optimization of equations. An
opt_level of 2 causes Warp to perform the highest level of
optimization available. An opt_level of 2 is recommended for
all designs.

OR
Result

Split
to 16

Split
to 2

18

Figure 4. The Balanced Sum Split

Split
to 16

OR
Result

16

18

2

Figure 5. The Cascaded Sum Split
6

Design Optimization Using Warp Synthesis Directives
Scope

Target: Signal

Inheritance: Hierarchical

Related Command-Line-Option: -o#

Applicable to: All PLDs

Example: attribute opt_level of my_signal:signal is 0;

This directive disables all optimization on the signal
my_signal.

The pin_avoid Directive

The pin_avoid directive is a string type directive that prevents
the fitter from mapping any signals to the specified pins. This
directive is only valid on the top-level entity of the design.

ATTRIBUTE pin_avoid OF entity-name: ENTITY IS
“string”;

The string used in the directive statement consists of one or
more pin-numbers. Each pin-number must be separated by
white space (spaces or tabs). This string can consist of sev-
eral smaller, concatenated strings. This feature can be used
if certain pins are being used for some special purposes
(such as with In System Reprogrammable devices—ISR) or
need to be reserved for some future functionality. When this
feature is used, the report file indicates these pins as Re-
served in the pin table. Such pins are named as Reserved#
where # is an index. In the case of CPLDs where I/O pins have
macrocells associated with them, this feature does not pre-
vent the fitter from using the buried macrocell portion associ-
ated with that particular pin.

Scope

Target: Top-level Entity.

Inheritance: None

Related Command-Line-Option: None

Applicable to: FLASH370i Devices Only

Examples:

attribute pin_avoid of my_design: entity is “2 3 4";

attribute pin_avoid of my_design: entity is “A1 B1 C1”;

The first example instructs the fitter to avoid the pins 2, 3 and
4 when trying to place the design into a device. The second
example is a case where the package being used is a
Pin-Grid-Array, in which the pin-numbers are alpha-numeric.

The pin_numbers Directive

ATTRIBUTE pin_numbers OF entity_name: ENTITY IS
“string”;

Once a design has been completed and the board is defined,
it may be desirable to maintain the pin out configuration when
modifications to the programmable logic design are made.
Locking signals to a particular pin can be accomplished by
using the pin_numbers directive in the design.

Example:

library ieee;

use ieee.std_logic_1164.all;

ENTITY and5Gate IS

 PORT (a: IN std_logic_VECTOR(0 TO 4);

 f: OUT std_logic);

ATTRIBUTE part_name of and5Gate:ENTITY IS “C371i”;

ATTRIBUTE pin_numbers of and5Gate:ENTITY IS

 “a(0):2 a(1):3 ” --The spaces after 3 and 5 are

 & “a(2):4 a(3):5 ” --necessary for concatenation (&

 & “f:6”; --operator), signal a(4) will be

 END and5Gate; --assigned a pin by Warp

ARCHITECTURE archpin_num OF and5Gate IS

BEGIN

 f <= a(0) AND a(1) AND a(2) AND a(3) AND a(4);

END archpin_num;

Even though this directive is called pin_numbers, it can also
assign PGA package pin-numbers which are in fact alpha-nu-
meric (such as “A1”).

It is recommended that whenever possible, particularly the
first time a design is fitted to a device, the pins of a device
should not be locked. When the pins are not locked, the fitting
tools are free to choose the optimal fitting arrangement within
the device for performance and minimal resource utilization.
In some rare occasions, certain pin arrangements can render
a fit impossible. Once a design has been fitted to a device
(and the tool has already chosen a working pin configuration),
the pin assignments can be back-annotated to the design
schematic or control file. The pin_numbers directive can also
be used to set the pins of the design.

Documentation Directives
This section describes directives used for documentation pur-
poses.

The part_name Directive

ATTRIBUTE part_name OF entity_name: ENTITY IS
“part_name”;

A user may want to specify a particular device so that the
original design documents specify which device it was de-
signed for. This directive will override any target device com-
mand line switch or a Warp GUI dialog box setting.

entity counter is port (a,b: in std_logic; ...);

attribute part_name of counter: entity is “c371i”;

end entity counter;

The order_code Directive

ATTRIBUTE order_code OF entity_name: ENTITY IS
“order_code”;

A particular package and speed bin of a device can be spec-
ified to the Warp synthesis tool by using the directive
order_code within the design to ensure timing information re-
flects the speed grade of the desired part. The order codes
can be found in the Ordering Code column of the ordering
information table for each device in the Cypress Semiconduc-
tor Programmable Logic Data Book. Timing delays for CPLDs
are calculated according to the speed bin specified by this
directive, or if no directive is specified in the VHDL code, the
compiler will use the directive specified in the device window
of Galaxy.

Example:

entity counter is port (

a,b: in std_logic; ...);
7

Design Optimization Using Warp Synthesis Directives
attribute order_code of counter: entity is “CY7C371i-
66JC”;

end entity counter;

Summary
Directives are a powerful mechanism to influence the synthe-
sis process, but they should be used judiciously. Careless or

excessive use of directives can, in fact, subvert the very de-
sign goals that are sought. Familiarity with the internal archi-
tecture of a PLD and careful use of the directives described
in this application note, can help a designer to get the best
performance out of Cypress programmable logic devices.The
following table summarizes VHDL attribute formats, values,
and command line switches.

Warp Directive Formats

Directive VHDL Format Values (D=Default) Command line

goal attribute goal of arch_name : architec-
ture is value;

speed (D), area, or combinatorial ygs,yga, ygc

state_encoding attribute state_encoding of type_name :
type is value;

sequential (D), one_hot_zero,
one_hot_one, or gray

--

no_latch attribute no_latch of signal_name : sig-
nal is value;

false (D) or true yl

lab_force attribute lab_force of signal_name : sig-
nal is location;

Example: “A1” --

pin_avoid attribute pin_avoid of entity_name : en-
tity is location;

Example: “1 2 3” --

polarity attribute polarity of signal_name : signal
is value;

pl_default (D), pl_keep, or pl_opt fk, fp

sum_split attribute sum_split of signal_name : sig-
nal is value;

balanced (D) or cascaded --

node_num attribute node_num of signal_name :
signal is value;

nd_auto (D) or positive integer fn

ff_type attribute ff_type of signal_name : signal
is value;

ff_default (D) , ff_d, ff_t , or ff_opt fd, ft, fo

opt_level attribute opt_level of signal_name : sig-
nal is integer;

2 (D), 1, or 0 o

part_name attribute part_name of entity_name :
entity is string;

Example: “c371” d

order_code attribute order_code of entity_name :
entity is string;

Example: “PALC22V10-25HC” p

pin_numbers attribute pin_numbers of entity_name :
entity is string;

Example: “sig1: ” & “sig2:2” ff
© Cypress Semiconductor Corporation, 1998. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

	Introduction
	Synthesis Directives
	Design Flow and Strategy for Using Directives
	Applying Directives
	Using the GUI or Command Line
	Using VHDL Attributes
	Using Schematic Attributes
	Using a Control File

	Area Optimization
	The GOAL Directive
	The SYNTHESIS_OFF Directive
	The FF_TYPE Directive
	The state_encoding Directive

	Speed Optimization
	The GOAL Directive

	Directives for Specific Control
	The FF_TYPE Directive
	The LAB_FORCE Directive
	The no_factor Directive
	The no_latch Directive
	The NODE_NUM Directive
	The SUM_SPLIT Directive
	The polarity Directive
	The opt_level Directive
	The pin_avoid Directive
	The PIN_NUMBERS Directive

	Documentation Directives
	The PART_NAME Directive
	The ORDER_CODE Directive

	Summary
	Warp Directive Formats

