
Lecture 12

Logistics
HW4 was due yesterday
HW5 was out yesterday (due next Wednesday)HW5 was out yesterday (due next Wednesday)
Feedback: thank you!
Things to work on: Big picture, Book chapters, Exam comments

Last lecture
Adders

Today
Cl ifi ti f Add

1CSE370, Lecture 13

Clarification of Adders
Summary of Combinational Logic
Introduction to Sequential Logic

The basic concepts
A simple example

12

Adders allow computers to add numbers
2-bit ripple-carry adder

A1 B1

A B
A2 B2

CoutCin

Sum1
Ci

A
Cout

Cin
B

AND2 OR3

11

AND2

Cin
Sum

B
A

33

XOR
32

XOR

CoutCin

1-Bit Adder

Sum2

CoutCin0

2CSE370, Lecture 13

A
B

Cin

13

AND2

12 14

Sum
Overflow

1112

XOR

Problem: Ripple-carry delay

Carry propagation limits adder speed (we want to add fast)
Cin

Cin
Sum

B
A

33

XOR
32

XOR

A

Cin
B

AND2 OR3

11

AND2

@0
@0 A0

B0
S0 @2

A1
B1

C1 @2

S1 @3

A2

C2 @4

S2 @5

@0
@2N

@0

@2N @2N+1

@2N+2

3CSE370, Lecture 13

A
B

Cin
A

Cout

13

AND2

12 14

Cout takes two gate delays
Cin arrives late

A2
B2

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

@0
@2N

@0
@0

@2N 2

1112

A
XOR

One Solution: Carry lookahead logic

Get Pi (propagate) and Gi (generate)

@0
Cin

Pi @1

Cin
Sum

B
A

33

XOR
32

A
Cout

Cin
B

AND2 OR3

11

AND2

@0
@0

A0
B0

S0 @2

A1
B1

C1 @2

S1 @3

A2

C2 @4

S2 @5

@0
@2N

@0

@2N @2N+1

@2N+2

P0
G0

P1
G1

P2

@2

@3

@3

@4

@4

4CSE370, Lecture 13

A
B

Cin
Cout

13

AND2

12 14
A2
B2

S2 @5

A3
B3

C3 @6

S3 @7
C4@8

@2N

@0
@0

12

Gi C2 = G1 + P1C1

C3 = G2 + P2C2

P2
G2

P3
G3

C4 = G3 + P3C3

= G1 + P1G0 + P1P0C0

= G2 + P2G1 + P2P1G0 + P2P1P0C0

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

C1 = G0 + P0C0

@3

@3

@4

@

Cascaded carry-lookahead adder
(in your HW5)

4 four-bit adders with internal carry lookahead
Second level lookahead extends adder to 16 bits

@3@2@3@2@3@2@3@2

A[15-12] B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

5CSE370, Lecture 13

Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@4@5@5

@5

@5@3

@0
C16

1112

Another solution: Carry-select adder

Redundant hardware speeds carry calculation
Compute two high-order sums while waiting for carry-in (C4)
Select correct high-order sum after receiving C4

4-bit adder
[7:4]

0C8

1C8
adder
high

adder
low

4-bit adder
[7:4]

Select correct high-order sum after receiving C4

@3

@3

I0
S

I1

Z@4 @3

@4

@4

@6

6CSE370, Lecture 13

4-Bit Adder
[3:0]

C0C4five
2:1 muxes

0101010101

C8 S7 S6 S5 S4 S3 S2 S1 S0

11

@3

@4

@4

@6

@5

12

We've finished combinational logic...

What you should know
Twos complement arithmetic
Truth tablesTruth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares

7CSE370, Lecture 13

K maps, logic minimization, don t cares
Multiplexers/demultiplexers
PLAs/PALs
ROMs
Adders

11

We had no way to store memory:
When the input changed, the output changed

Next: Sequential logic can store memory…
12

Sequential Logic (next 5 weeks!)

We learn the details
Latches, flip-flops, registers (storage)
Shift registers counters (we can count now!)Shift registers, counters (we can count now!)
State machines
Timing and timing diagrams

timing more important than combinational logic
Synchronous and asynchronous inputs

Metastability (problem!)
Moore and Mealy machines (types of state machines)

8CSE370, Lecture 13

More...

12

Sequential versus combinational

B

A C
B

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Ob C i

9CSE370, Lecture 13

Observe C again

Combinational: C will stay the same
Sequential: C may be different

12

Sequential versus combinational (again)

Combinational systems are memoryless
Outputs depend only on the present inputs

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem

10CSE370, Lecture 13

Inputs
OutputsSystem

Feedback
12

Synchronous sequential systems

Memory holds a system’s state
Changes in state occur at specific times
A periodic signal times or clocks the state changesA periodic signal times or clocks the state changes
The clock period is the time between state changes

B

A C

clock
State changes occur

at rising edge of clock

11CSE370, Lecture 13

period

duty cycle = pulsewidth/period
(here it is 50%)

pulsewidth

clock

12

Steady-state abstraction

Outputs retain their settled values
The clock period must be long enough for all voltages to
settle to a steady state before the next state changesettle to a steady state before the next state change

B

A C

clock Clock hides transient
behavior

12CSE370, Lecture 13

clock

C

Settled value

12

What did I just say about sequential logic?

Has clock
Synchronous = clocked
Exception: AsynchronousException: Asynchronous

Has state
State = memory

Employs feedback

Assumes steady-state signals
Signals are valid after they have settled

13CSE370, Lecture 13

Signals are valid after they have settled
State elements hold their settled output values

12

Example: A sequential system

Door combination lock
Enter 3 numbers in sequence and the door opens
If there is an error the lock must be resetIf there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset
Outputs: Door open/close
Memory: Must remember the combination

14CSE370, Lecture 1312

Understand the problem

Consider I/O and unknowns
How many bits per input?
How many inputs in sequence?How many inputs in sequence?
How do we know a new input is entered?
How do we represent the system states?

resetvaluenew

15CSE370, Lecture 13

open/closed

clock

12

Implement using sequential logic

Behavior
Clock tells us when to look at inputs

After inputs have settledAfter inputs have settled
Sequential: Enter sequence of numbers
Sequential: Remember if error occurred

Need a finite-state diagram
Assume synchronous inputs
State sequence

Enter 3 numbers serially
b f d

resetvaluenew

16CSE370, Lecture 13

Remember if error occurred
All states have outputs

Lock open or closed

open/closed

clock

12

Finite-state diagram

States: 5
Each state has outputs

O t t / l d

Inputs: reset, new, results of
comparisons

Assume synchronous inputs
Outputs: open/closed

y p

C1!= value
& new C2!= value C3!= value

closed

ERR

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

17CSE370, Lecture 13

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

& new
& new & new

reset

not newnot newnot new

S1 S2 S3 OPEN

open

12

Separate data path and control

Data path
Stores combination
Compares inputs with

Control
Finite state-machine controller
Control for data pathCompares inputs with

combination
Control for data path
State changes clocked

resetnewC1 C2 C3

multiplexer

mux
control

4 4 4

18CSE370, Lecture 13

open/closed

comparatorvalue
equal

multiplexer

controller
clock

4

4

12

Refine diagram; generate state table

Refine state diagram to
include internal structure

closed

not equal
not equal

ERR

closed
mux=C1reset equal

& new

& new not equal
& new not equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
next

19CSE370, Lecture 13

Generate
state table

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

12

