Lecture 12

Logistics
= HW4 was due yesterday
HWS5 was out yesterday (due next Wednesday)
Feedback: thank you!
Things to work on: Big picture, Book chapters, Exam comments

& Last lecture
= Adders

¢ Today
m Clarification of Adders
= Summary of Combinational Logic
= Introduction to Sequential Logic
¥ The basic concepts
¥ A simple example

CSE370, Lecture 12 1

Adders allow computers to add numbers
2-bit ripple-carry adder

[
A, B, A, B,
| 1-Bit Adder | |
A JD_‘_XOR
B 3
Cin —;)D_ Sum 0— Cin Cout B i Cin Cout
—] . i |
in o %? i Cout 1 1
Ci: ;ID ::_Z>— Cout Suml SumZ
A AND2
B
T s
/. Overflow
Sum

CSE370, Lecture 12 2

Problem: Ripple-carry delay

& Carry propagation limits adder speed (we want to add fast)

Cin
S l
@0 A D _
@oB [% A0 — —>S0@2
.............................. s 50— . cie2
@2N Cin P oo
KX St P @2N+1
T — A |, s1@3
@0 B Bl—» Cc2 @4
@2N Cin
00 A D2 | o83 | @2N+2 A— L.s2@s
- Cout B2—» C3 @6
@2N Cin ;lj —:—Z>_ _1
@0 A A3 | +sS3@7
0 B3 —»Cout @8
@0 B mgt— 7 Coul takes two gate delays ™
C,, arrives late
CSE370, Lecture 12 3

One Solution: Carry lookahead logic

& Get Pi (propagate) and Gi (generate)

S — - cin
@0 A D Pi o1 1
@0 B ;) [xx @2
A0 —| PO
. T Sum @3
@2N Cin ’;;)D_ BO—»| GO %
.............................. @2N+1 @
i—
@0 B D Al—s| P1 @
@2N Cin 7T Bl—s| G1 |»C2@4 @3
@0 A AND2 _ORS @2N+2 l
i D —D_ Cout A2—s| P2 | —»S2 @§ @4
@2N Cin 17 1z B2—»| G2 |—»,C3 @3
R l
@0 A :13 Gi C,=G, +P,C, =G, + P,G, + P,P,C, @4
@0 B mt— .. C3=G, + PG, A3—s P3 _,sgg
_ B G3
C, =Gy + PoCy =G, + P,Gy + P,PiGy + P,P,PC, B3 —c4
C,=Gy+ P,C, @3

CSE370, Lecture 12

= G3 + P3G, + P3P,G, + P3P,P Gy + P3P,P1PCy 4

Cascaded carry-lookahead adder

(n your HWO)

& 4 four-bit adders with internal carry lookahead
= Second level lookahead extends adder to 16 bits

4 4 4 4 4 4 4 4
Al512] BII5-17] ALLL8] B8] AT BL7-4] AL0] B30
4-bit Adder cl2 4-bit Adder c8 4-bit Adder ca 4-bit Adder ‘(Z)OT
PG PG PG PG
4 4 4 4
s11812] s[al-8] s[7-4] S[3-0]
05 05 D4
P3 G3 c3 P2 62 c2 PL 61 c1 P0 GO
c16 |,) cole—20_
@5 Lookahead Carry Unit @0
P30 G3-0

CSE370, Lecture 12

1@3 l@s

Another solution: Carry-select adder

4 Redundant hardware speeds carry calculation
= Compute two high-order sums while waiting for carry-in (C4)
m Select correct high-order sum after receiving C4

low

@4,

@3S @6
@4y D

@3 C8 4-b{t7§‘?]der 0 adder
@3 | | @4

C8 . 1
4-bit gdder l—— adder
[7:4] high

PLLi]] Je
@3
five 10/10(10(10120 c4 4-Bit Adder
2:1 muxes [3:0]

Cco

SLTLLL

C8 S7 S6 S5
@6
CSE370, Lecture 12

L& &

|

SO

We've finished combinational logic...

4 What you should know
= Twos complement arithmetic
Truth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers

PLAS/PALs

ROMs We had no way to store memory:
Adders When the input changed, the output changed

Next: Sequential logic can store memory...
CSE370, Lecture 12

Sequential Logic (next 5 weeks!)

& We learn the details
m Latches, flip-flops, registers (storage)
= Shift registers, counters (we can count now!)
m State machines
= Timing and timing diagrams
¥ timing more important than combinational logic
= Synchronous and asynchronous inputs
¥ Metastability (problem!)
= Moore and Mealy machines (types of state machines)

= More...

CSE370, Lecture 12

Sequential versus combinational

A —

C

—>

B —

Iclock

Apply fixed inputs A, B
Wait for clock edge
Observe C
Wait for another clock edge
Observe C again

Combinational: C will stay the same
Sequential: C may be different

CSE370, Lecture 12 9

Sequential versus combinational (again)

4 Combinational systems are memoryless
= Outputs depend only on the present inputs

_ s}

Inputs ——— System

Outputs

L
——

& Sequential systems have memory
= Outputs depend on the present and the previous inputs

Inputs

—]

System

——

< Outputs

.

-

CSE370, Lecture 12

Feedback

10

Synchronous sequential systems

4 Memory holds a system’s state
= Changes in state occur at specific times
= A periodic signal times or clocks the state changes
m The clock period is the time between state changes

A —
. ,C
B —
State changes occur
ICIOCK at rising edge of clock
pulsewidth duty cycle = pulsewidth/period
f— (here it is 50%)
clock |
period
CSE370, Lecture 12 11

Steady-state abstraction

& Outputs retain their settled values
m The clock period must be long enough for all voltages to
settle to a steady state before the next state change

A —

C

B —

I clock Clock hides transient
behavior

clock [_[LI 1T 1_

c w

Settled value

CSE370, Lecture 12 12

What did | just say about sequential logic?

4 Has clock
= Synchronous = clocked
m Exception: Asynchronous

& Has state
= State = memory

& Employs feedback

& Assumes steady-state signals
= Signals are valid after they have settled
m State elements hold their settled output values

CSE370, Lecture 12 13

Example: A sequential system

4 Door combination lock

Enter 3 numbers in sequence and the door opens
If there is an error the lock must be reset

After the door opens the lock must be reset
Inputs: Sequence of humbers, reset

Outputs: Door open/close

Memory: Must remember the combination

CSE370, Lecture 12 14

Understand the problem

4 Consider 1/0 and unknowns
= How many bits per input?
= How many inputs in sequence?
= How do we know a new input is entered?
= How do we represent the system states?

new value reset

LI

clock —>

|

open/closed

CSE370, Lecture 12 15

Implement using sequential logic

& Behavior
m Clock tells us when to look at inputs
¥ After inputs have settled
m Sequential: Enter sequence of numbers
= Sequential: Remember if error occurred

¢ Need a finite-state diagram new value reset
= Assume synchronous inputs l l l l l l
m State sequence
¥ Enter 3 numbers serially
¥ Remember if error occurred
= All states have outputs
¥ Lock open or closed

clock —>

open/closed

CSE370, Lecture 12 16

Finite-state diagram

& States: 5 4 Inputs: reset, new, results of

= Each state has outputs comparisons

4 Outputs: open/closed

We use state diagrams to
represent sequential logic l

System transitions between
finite numbers of states

C1!= value
& new

/\31 m OPEN
reset closed closed
Cl== value C2== value C3== value
& new & new & new '

not new not new not new

CSE370, Lecture 12

= Assume synchronous inputs

17

Separate data path and control

4 Data path 4 Control
m Stores combination = Finite state-machine controller
= Compares inputs with = Control for data path
combination = State changes clocked

[cT] [cZ] [c3]
3|

controller

value clock

open/closed

CSE370, Lecture 12

18

Refine diagram; generate state table

& Refine state diagram to
include internal structure

not equal
&n not equal
s1 s2 &new___ oPEN
ux=C equal W equal
& new & new u
not new not new not new
next
& Generate reset _new equal state| state mux _ open/closed

1 - - - S1 C1 closed
state table 0 0 - st | st c1 closed
0 1 0 S1 ERR - closed
0 1 1 S1 S2 c2 closed

0 1 1 S3 OPEN - open

CSE370, Lecture 12 19

