Lecture 12

# Logistics
= HW4 was due yesterday
HWS5 was out yesterday (due next Wednesday)
Feedback: thank you!
Things to work on: Big picture, Book chapters, Exam comments

& Last lecture
= Adders

¢ Today
m Clarification of Adders
= Summary of Combinational Logic
= Introduction to Sequential Logic
¥ The basic concepts
¥ A simple example
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Adders allow computers to add numbers
2-bit ripple-carry adder
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Problem: Ripple-carry delay

& Carry propagation limits adder speed (we want to add fast)
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One Solution: Carry lookahead logic

& Get Pi (propagate) and Gi (generate)
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Cascaded carry-lookahead adder

(n your HWO)

& 4 four-bit adders with internal carry lookahead
= Second level lookahead extends adder to 16 bits
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Another solution: Carry-select adder

4 Redundant hardware speeds carry calculation
= Compute two high-order sums while waiting for carry-in (C4)
m Select correct high-order sum after receiving C4
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We've finished combinational logic...

4 What you should know
= Twos complement arithmetic
Truth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers

PLAS/PALs

ROMs We had no way to store memory:
Adders When the input changed, the output changed

Next: Sequential logic can store memory...
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Sequential Logic (next 5 weeks!)

& We learn the details
m Latches, flip-flops, registers (storage)
= Shift registers, counters (we can count now!)
m State machines
= Timing and timing diagrams
¥ timing more important than combinational logic
= Synchronous and asynchronous inputs
¥ Metastability (problem!)
= Moore and Mealy machines (types of state machines)

= More...
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Sequential versus combinational
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Iclock

Apply fixed inputs A, B
Wait for clock edge
Observe C
Wait for another clock edge
Observe C again

Combinational: C will stay the same
Sequential: C may be different

CSE370, Lecture 12 9

Sequential versus combinational (again)

4 Combinational systems are memoryless
= Outputs depend only on the present inputs
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Synchronous sequential systems

4 Memory holds a system’s state
= Changes in state occur at specific times
= A periodic signal times or clocks the state changes
m The clock period is the time between state changes
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State changes occur
ICIOCK at rising edge of clock
pulsewidth duty cycle = pulsewidth/period
f— (here it is 50%)
clock |
period
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Steady-state abstraction

& Outputs retain their settled values
m The clock period must be long enough for all voltages to
settle to a steady state before the next state change
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I clock Clock hides transient
behavior
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What did | just say about sequential logic?

4 Has clock
= Synchronous = clocked
m Exception: Asynchronous

& Has state
= State = memory

& Employs feedback

& Assumes steady-state signals
= Signals are valid after they have settled
m State elements hold their settled output values
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Example: A sequential system

4 Door combination lock

Enter 3 numbers in sequence and the door opens
If there is an error the lock must be reset

After the door opens the lock must be reset
Inputs: Sequence of humbers, reset

Outputs: Door open/close

Memory: Must remember the combination
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Understand the problem

4 Consider 1/0 and unknowns
= How many bits per input?
= How many inputs in sequence?
= How do we know a new input is entered?
= How do we represent the system states?

new value reset
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Implement using sequential logic

& Behavior
m Clock tells us when to look at inputs
¥ After inputs have settled
m Sequential: Enter sequence of numbers
= Sequential: Remember if error occurred

¢ Need a finite-state diagram new value reset
= Assume synchronous inputs l l l l l l
m State sequence
¥ Enter 3 numbers serially
¥ Remember if error occurred
= All states have outputs
¥ Lock open or closed

clock —>

open/closed

CSE370, Lecture 12 16




Finite-state diagram

& States: 5 4 Inputs: reset, new, results of

= Each state has outputs comparisons

4 Outputs: open/closed

We use state diagrams to
represent sequential logic l

System transitions between
finite numbers of states

C1!= value
& new

/\31 m OPEN
reset closed closed
Cl== value C2== value C3== value
& new & new & new '

not new not new not new
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= Assume synchronous inputs
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Separate data path and control

4 Data path 4 Control
m Stores combination = Finite state-machine controller
= Compares inputs with = Control for data path
combination = State changes clocked

[cT] [cZ] [c3]
3|

controller

value clock

open/closed
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Refine diagram; generate state table

& Refine state diagram to
include internal structure

not equal
&n not equal
s1 s2 &new___ oPEN
ux=C equal W equal
& new & new u
not new not new not new
next
& Generate reset _new equal state| state  mux _ open/closed

1 - - - S1 C1 closed
state table 0 0 - st | st c1 closed
0 1 0 S1 ERR - closed
0 1 1 S1 S2 c2 closed

0 1 1 S3 OPEN - open
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