
Lecture 12

Logistics
HW4 was due yesterday
HW5 was out yesterday (due next Wednesday)HW5 was out yesterday (due next Wednesday)
Feedback: thank you!  
Things to work on: Big picture, Book chapters, Exam comments

Last lecture
Adders 

Today
Cl ifi ti f Add
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Clarification of Adders
Summary of Combinational Logic
Introduction to Sequential Logic

The basic concepts
A simple example

12

Adders allow computers to add numbers
2-bit ripple-carry adder
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XOR

Problem: Ripple-carry delay

Carry propagation limits adder speed (we want to add fast)
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Cout takes two gate delays
Cin arrives late
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One Solution: Carry lookahead logic

Get Pi (propagate) and Gi (generate)
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Gi C2 = G1 + P1C1 

C3 = G2 + P2C2
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Cascaded carry-lookahead adder
(in your HW5)

4 four-bit adders with internal carry lookahead
Second level lookahead extends adder to 16 bits
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Lookahead Carry Unit
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Another solution: Carry-select adder

Redundant hardware speeds carry calculation
Compute two high-order sums while waiting for carry-in (C4)
Select correct high-order sum after receiving C4

4-bit adder
[7:4]
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4-Bit Adder
[3:0]
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We've finished combinational logic...

What you should know
Twos complement arithmetic
Truth tablesTruth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
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K maps, logic minimization, don t cares
Multiplexers/demultiplexers
PLAs/PALs
ROMs
Adders
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We had no way to store memory:
When the input changed, the output changed

Next: Sequential logic can store memory…
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Sequential Logic (next 5 weeks!)

We learn the details
Latches, flip-flops, registers (storage)
Shift registers counters (we can count now!)Shift registers, counters (we can count now!)
State machines 
Timing and timing diagrams 

timing more important than combinational logic
Synchronous and asynchronous inputs

Metastability (problem!)
Moore and Mealy machines (types of state machines)
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More...
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Sequential versus combinational

B

A C
B

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Ob C i
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Observe C again

Combinational: C will stay the same
Sequential: C may be different
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Sequential versus combinational (again)

Combinational systems are memoryless
Outputs depend only on the present inputs 

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem
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Inputs
OutputsSystem

Feedback
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Synchronous sequential systems

Memory holds a system’s state
Changes in state occur at specific times
A periodic signal times or clocks the state changesA periodic signal times or clocks the state changes 
The clock period is the time between state changes

B
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clock
State changes occur 

at rising edge of clock
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period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth

clock
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Steady-state abstraction

Outputs retain their settled values
The clock period must be long enough for all voltages to 
settle to a steady state before the next state changesettle to a steady state before the next state change

B

A C

clock Clock hides transient 
behavior

12CSE370, Lecture 13

clock

C

Settled value

12



What did I just say about sequential logic?

Has clock
Synchronous = clocked
Exception: AsynchronousException: Asynchronous

Has state
State = memory

Employs feedback

Assumes steady-state signals
Signals are valid after they have settled
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Signals are valid after they have settled
State elements hold their settled output values
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Example: A sequential system

Door combination lock
Enter 3 numbers in sequence and the door opens
If there is an error the lock must be resetIf there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset
Outputs: Door open/close
Memory: Must remember the combination
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Understand the problem

Consider I/O and unknowns
How many bits per input?
How many inputs in sequence?How many inputs in sequence?
How do we know a new input is entered?
How do we represent the system states?

resetvaluenew
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open/closed

clock
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Implement using sequential logic

Behavior
Clock tells us when to look at inputs

After inputs have settledAfter inputs have settled
Sequential: Enter sequence of numbers
Sequential: Remember if error occurred

Need a finite-state diagram
Assume synchronous inputs
State sequence

Enter 3 numbers serially
b f d

resetvaluenew

16CSE370, Lecture 13

Remember if error occurred
All states have outputs

Lock open or closed

open/closed

clock
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Finite-state diagram

States: 5
Each state has outputs

O t t / l d

Inputs: reset, new, results of 
comparisons

Assume synchronous inputs
Outputs: open/closed

y p

C1!= value
& new C2!= value C3!= value

closed

ERR

We use state diagrams to 
represent sequential logic

System transitions between 
finite numbers of states
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Separate data path and control

Data path
Stores combination
Compares inputs with

Control
Finite state-machine controller
Control for data pathCompares inputs with 

combination
Control for data path
State changes clocked

resetnewC1 C2 C3

multiplexer

mux 
control

4 4 4
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Refine diagram; generate state table

Refine state diagram to 
include internal structure
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not equal
not equal

ERR

closed
mux=C1reset equal

& new
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& new not equal
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closed
mux=C3 equal
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open

reset new equal state state mux open/closed
next
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Generate 
state table

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...
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