#### Lecture 15

- Logistics
  - HW6 is out, due Wednesday
- Last lecture
  - Continuing on basic building blocks for sequential logic
    - ∠ Latches and flip-flops

    - ✓ State Diagram
    - **∠** Asynchronous inputs
- Today
  - Continue more on building blocks for sequential logic

    - **∠** Registers

CSE370, Lecture 15 1

### Asynchronous inputs

- Clocked circuits are synchronous
- Unclocked circuits or signals are asynchronous
- Synchronous circuits have asynchronous inputs
  - Reset signal, memory wait, user input, etc.
  - Inputs can change at any time
    - ✓ We must synchronize the input to our clock

CSE370, Lecture 15

### Timing terminology and constraints

- Setup time t<sub>su</sub>: Amount of time the input must be stable before the clock transitions high (or low for negative-edge triggered FF)
- Hold time t<sub>h</sub>: Amount of time the input must be stable after the clock transitions high (or low for negative-edge triggered FF)
- Clock width t<sub>w</sub>: Clock width that must be met
- Propagation delays t<sub>plh</sub> and t<sub>phl</sub>: Propagation delay (high to low, low to high)





CSE370, Lecture 15

### Synchronizer failure

- Occurs when input changes near clock edge
  - Input is neither 1 or 0 when clock goes high
  - Output may be neither 0 or 1

     ✓ May stay undefined for a long time
  - Undefined state is called metastability





CSE370, Lecture 15

# Minimizing synchronizer failures

- ◆ Failure probability can never be zero
  - Cascade two (or more) flip-flops
    - **∠** Effectively synchronizes twice
    - **∠** Both would have to fail for system to fail



CSE370, Lecture 15

# Cascading flip-flops

- ◆ Flip-flop propagation delays exceed hold times
  - Second stage commits its input before input changes



CSE370, Lecture 15

#### Side note: Clock skew

- Goal: Clock all flip-flops at the same time
  - Difficult to achieve in high-speed systems

    Clock delays (wire, buffers) are comparable to logic delays
  - Problem is called clock skew



Original state: IN = 0, Q0 = 1, Q1 = 1

Next state: Q0 = 0, Q1 = 0 (should be Q1 = 1)

Avoiding clock skew: design identical delays

CSE370, Lecture 15

7

### Handling asynchronous inputs

- ◆ Never fan-out asynchronous inputs
  - Synchronize at circuit boundary
  - Fan-out synchronized signal



CSE370, Lecture 15

#### One more important concept: Debouncing

- Switch inputs bounce
  - i. e. don't make clean transitions
- Can use SR latch for debouncing
  - Eliminates dynamic hazards
  - "Cleans-up" inputs



CSE370, Lecture 15

9

#### Summary:

### Timing issues with asynchronous inputs

- ◆ For sequential logic circuits, timing issues have to be considered.
- Inputs are often asynchronous and can cause problems.
- Different amount of delay at different part of the circuit can cause problems also.
- Solutions:
  - Cascade flip flops in series
  - Incorporate RS latch for debouncing
  - Design to keep timing alignment in mind (length of cable, etc)

CSE370, Lecture 15

# Registers

- ◆ Group of storage elements read/written as a unit.
  - Store related values (e.g. a binary word)
- ◆ Collection of flip-flops with common control
  - Share clock, reset, set lines
- Example:
  - Storage registers
  - Shift registers
  - Counters

CSE370, Lecture 15

11

# Storage registers

- ◆ Basic storage registers uses flip flops
- ◆ Example: 4 bit storage register



CSE370, Lecture 15 12

# Shift registers

- Hold successively sampled input values
  - Delays values in time
  - Example: 4-bit shift register
    - ✓ Stores 4 input values in sequence



CSE370, Lecture 15 13

# Shift-register applications

◆ Parallel-to-serial conversion for signal transmission



◆ Pattern recognition (circuit recognizes 1001)



CSE370, Lecture 15

#### Counters

Ring counter: Sequence is 1000, 0100, 0010, 0001
 Assuming one of these patterns is the starting state



◆ Johnson counter: Sequence is 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000



CSE370, Lecture 15

# A binary counter

Has logic between flip-flops



CSE370, Lecture 15

# Summary: Sequential-logic building blocks

- ◆ Know latches and flip-flops
- ◆ Know clocks, timing, timing diagrams
- Understand asynchronous inputs
- ◆ Know basic registers

CSE370, Lecture 15 17