
Lecture 17

Logistics
HW6 due today, HW7 out last Monday --- due on Monday
Midterm review Tuesday 4:15pm Room TBAMidterm review Tuesday 4:15pm Room TBA

Last lecture
Introduction to finite state machines
Counters as finite state machines

Today
Finish counter design
M l fi it t t hi

1CSE370, Lecture 19, 20

More complex finite-state machines
Introduction of Moore and Mealy machines

17

Review: Counter design procedure

1. Draw a state diagram

2. Draw a state-transition table2. Draw a state transition table

3. Encode the next-state functions
Minimize the logic using k-maps

4. Implement the design

2CSE370, Lecture 19, 20

Example: A 5-state counter

17

Example: A 5-state counter

Counter repeats 5 states in sequence
Sequence is 000, 010, 011, 101, 110, 000 (not binary)

000 110

Step 1: State diagram Step 2: State transition table
Assume D flip-flops

C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –

Present State Next State

3CSE370, Lecture 19, 20

010

011

101 0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

17

5-state counter (con’t)

Step 3: Encode the next state functions

C

B

A

0 0 0 X

X 1 X 1

C+ C

B

A

1 1 0 X

X 0 X 1

B+ C

B

A

0 1 0 X

X 1 X 0

A+

4CSE370, Lecture 19, 20

A+ = BC'C+ = A B+ = B' + A'C'

17

5-state counter (con’t)

Step 4: Implement the design

D Q D Q D QC B A

CLK

A

A' B

5CSE370, Lecture 19, 20

A'
C'
B'

B
C'

17

5-state counter (con’t)

Is our design robust?
What if the counter starts in a 111 state?

001

100

111

Does our counter get
stuck in invalid states???

000 110

6CSE370, Lecture 19, 20

100

010

011

101

17

5-state counter (con’t)

Back-annotate our design to check it
Draw state diagramFill in state transition table

000

010

011

101

110C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0

Present State Next State 001

7CSE370, Lecture 19, 20

0111 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

100

111

The proper methodology is to design
your counter to be self-starting

A+ = BC'

C+ = A

B+ = B' + A'C'

17

Self-starting counters

Invalid states should always transition to valid states
Assures startup
Assures bit-error toleranceAssures bit-error tolerance

Design your counters to be self-starting
Draw all states in the state diagram
Fill in the entire state-transition table
May limit your ability to exploit don't cares

Choose startup transitions that minimize the logic

8CSE370, Lecture 19, 2017

Finite state machines: more than counters

FSM: A system that visits a finite number of logically
distinct states

Counters are simple FSMs
Outputs and states are identical
Visit states in a fixed sequence

FSMs are typically more complex than counters
Outputs can depend on current state and on inputs
State sequencing depends on current state and on inputs

9CSE370, Lecture 19, 2017

FSM design

Counter-design procedure
1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

FSM-design procedure
1. State diagram
2. state-transition table
3. State minimization
4 State encoding

10CSE370, Lecture 19, 20

4. State encoding
5. Next-state logic minimization
6. Implement the design

17

Example: A vending machine

15 cents for a cup of coffee

Doesn’t take pennies or quarters ResetDoesn t take pennies or quarters

Doesn’t provide any change

FSM-design procedure
1. State diagram

Vending
Machine

FSM

N

D

OpenCoin
Sensor

Release
Mechanism

11CSE370, Lecture 19, 20

g
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

17

Clock

A vending machine: state diagram

Reset

S0

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

12CSE370, Lecture 19, 2017

[p][p] [p]

S8
[open]

D

S7
[open]

N

A vending machine: State transition table

present inputs next output
state D N state open

S0 0 0 S0 0
0 1 S1 0
1 0 S2 0
1 1 -- –

S1 0 0 S1 0
0 1 S3 0
1 0 S4 1
1 1 – –

S2 0 0 S2 0
0 1 S5 1
1 0 S6 1
1 1 – –

13CSE370, Lecture 19, 2017

S3 0 0 S3 0
0 1 S7 1
1 0 S8 1
1 1 – –

S4 – – S4 1
S5 – – S5 1
S6 – – S6 1
S7 – – S7 1
S8 – – S8 1

A vending machine: State minimization

present inputs next output
state D N state open

Reset
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0

0¢

5¢

N

N

D

14CSE370, Lecture 19, 2017

symbolic state table

1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1N + D

10¢

15¢
[open]

D

A vending machine: State encoding

present state inputs next state output
Q1 Q0 D N D1 D0 openQ1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0

15CSE370, Lecture 19, 2017

1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

A vending machine: Logic minimization

0 0 1 1

Q1D1
0 1 1 0

Q1D0
0 0 1 0

Q1Open

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

0 1 1 1

X X X X

1 1 1 1

Q0

N
D

1 0 1 1

X X X X

0 1 1 1

Q0

N
D

0 0 1 0

X X 1 X

0 0 1 0

Q0

N
D

16CSE370, Lecture 19, 2017

OPEN = Q1 Q0

A vending machine: Implementation

17CSE370, Lecture 19, 2017

Generalized FSM model

State variables (state vector) holds circuit state
Stored in registers

Outputsoutput

Combinational logic computes next state and outputs
Next state is a function of current state and inputs
Outputs are functions of

Current state (Moore machine)
Current state and inputs (Mealy machine)

18CSE370, Lecture 19, 20

Inputs
Outputs

Next State

Current State

logic

Next-state
logic

17

