
Lecture 17

Logistics
HW6 due today, HW7 out last Monday --- due on Monday
Midterm review Tuesday 4:15pm Room TBAMidterm review Tuesday 4:15pm Room TBA

Last lecture
Introduction to finite state machines
Counters as finite state machines

Today
Finish counter design
M l fi it t t hi
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More complex finite-state machines
Introduction of Moore and Mealy machines 
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Review: Counter design procedure

1.  Draw a state diagram

2. Draw a state-transition table2.  Draw a state transition table

3.  Encode the next-state functions
Minimize the logic using k-maps

4.  Implement the design

2CSE370, Lecture 19, 20

Example: A 5-state counter
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Example: A 5-state counter

Counter repeats 5 states in sequence
Sequence is 000, 010, 011, 101, 110, 000 (not binary)

000 110

Step 1: State diagram Step 2: State transition table
Assume D flip-flops

C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –

Present State      Next State
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010

011

101 0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –
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5-state counter (con’t)

Step 3: Encode the next state functions

C

B

A

0 0 0 X

X 1 X 1

C+ C

B

A

1 1 0 X

X 0 X 1

B+ C

B

A

0 1 0 X

X 1 X 0

A+
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A+ = BC'C+ = A B+ = B' + A'C'
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5-state counter (con’t)

Step 4: Implement the design

D Q D Q D QC B A

CLK

A

A' B
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A'
C'
B'

B
C'
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5-state counter (con’t)

Is our design robust?
What if the counter starts in a 111 state?

001

100

111

Does our counter get
stuck in invalid states???

000 110
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100

010

011

101
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5-state counter (con’t)

Back-annotate our design to check it
Draw state diagramFill in state transition table

000

010

011

101

110C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0

Present State      Next State 001

7CSE370, Lecture 19, 20

0111 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

100

111

The proper methodology is to design
your counter to be self-starting

A+ = BC'

C+ = A

B+ = B' + A'C'
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Self-starting counters

Invalid states should always transition to valid states
Assures startup 
Assures bit-error toleranceAssures bit-error tolerance

Design your counters to be self-starting
Draw all states in the state diagram
Fill in the entire state-transition table
May limit your ability to exploit don't cares

Choose startup transitions that minimize the logic 
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Finite state machines: more than counters

FSM: A system that visits a finite number of logically 
distinct states

Counters are simple FSMs
Outputs and states are identical
Visit states in a fixed sequence

FSMs are typically more complex than counters
Outputs can depend on current state and on inputs
State sequencing depends on current state and on inputs
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FSM design

Counter-design procedure
1.  State diagram
2.  State-transition table
3.  Next-state logic minimization
4.  Implement the design

FSM-design procedure
1. State diagram
2. state-transition table
3.  State minimization 
4 State encoding
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4.  State encoding
5.  Next-state logic minimization
6.  Implement the design
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Example: A vending machine

15 cents for a cup of coffee

Doesn’t take pennies or quarters ResetDoesn t take pennies or quarters

Doesn’t provide any change

FSM-design procedure
1. State diagram

Vending
Machine

FSM

N

D

OpenCoin
Sensor

Release
Mechanism
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g
2. state-transition table
3.  State minimization 
4.  State encoding
5.  Next-state logic minimization
6.  Implement the design
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Clock

A vending machine: state diagram

Reset

S0

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

12CSE370, Lecture 19, 2017    

[ p ][ p ] [ p ]

S8
[open]

D

S7
[open]

N



A vending machine: State transition table

present inputs next output
state D N state open

S0 0 0 S0 0
0 1 S1 0
1 0 S2 0
1 1 -- –

S1 0 0 S1 0
0 1 S3 0
1 0 S4 1
1 1 – –

S2 0 0 S2 0
0 1 S5 1
1 0 S6 1
1 1 – –
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S3 0 0 S3 0
0 1 S7 1
1 0 S8 1
1 1 – –

S4 – – S4 1
S5 – – S5 1
S6 – – S6 1
S7 – – S7 1
S8 – – S8 1

A vending machine: State minimization

present inputs next output
state D N state open

Reset
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0

0¢

5¢

N

N

D
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symbolic state table

1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1N + D

10¢

15¢
[open]

D



A vending machine: State encoding

present state inputs next state output
Q1 Q0 D N D1 D0 openQ1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
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1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

A vending machine: Logic minimization 

0 0 1 1

Q1D1
0 1 1 0

Q1D0
0 0 1 0

Q1Open

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

0 1 1 1

X X X X

1 1 1 1

Q0

N
D

1 0 1 1

X X X X

0 1 1 1

Q0

N
D

0 0 1 0

X X 1 X

0 0 1 0

Q0

N
D
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OPEN = Q1 Q0



A vending machine: Implementation
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Generalized FSM model

State variables (state vector) holds circuit state
Stored in registers

Outputsoutput

Combinational logic computes next state and outputs
Next state is a function of current state and inputs
Outputs are functions of 

Current state (Moore machine) 
Current state and inputs (Mealy machine)
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Inputs
Outputs

Next State

Current State

logic

Next-state
logic
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