Lecture 23

Logistics
= HWS8 due today, HW9 is due Friday
= All lab must be done by 6/5 Thu 6pm.

¢ Last lecture
m State encoding
¥ One-hot encoding
¥ Output encoding

¢ Today:
= Optimizing FSMs
¥ Pipelining
¥ Retiming
¥ Partitioning

CSE370, Lecture 25

Example: Digital combination lock

4 An output-encoded FSM

Punch in 3 values in sequence and the door opens
If there is an error the lock must be reset

After the door opens the lock must be reset
Inputs: sequence of number values, reset
Outputs: door open/close

new value reset

LI

clock —>

|

open/closed

CSE370, Lecture 22

Design the datapath

[CI] [C2] [C3] value; C1; C2; C3

4)[4{ 4 mux I mux
control ! control

T
[multiplexer
4
value—+—[comparator |———————+
4 P equal '

4 Choose simple control
= 3-wire mux for datapath
¥ Control is 001, 010, 100
= Open/closed bit for lock state

& Control is 0/1 equal

CSE370, Lecture 22 3

Output encode the FSM

& FSM outputs
= Mux control is 100, 010, 001
= Lock control is 0/1

& State are: SO, S1, S2, S3, or ERR
= Can use 3, 4, or 5 bits to encode
= Have 4 outputs, so choose 4 bits
¥ Encode mux control and lock control in state bits
¥ Lock control is first bit, mux control is last 3 bits
SO0 = 0001 (lock closed, mux first code)
S1 =0010 (lock closed, mux second code)
S2 = 0100 (lock closed, mux third code)
S3 = 1000 (lock open)
ERR = 0000 (error, lock closed)

CSE370, Lecture 22 4

Logic designed

not equal
&n not equal
) & new s3
start W equal ux=C equal W equal open
& new & new u & new u
not new not new not new
Do = Q,N’ Preset, = start

D, = QuEN + Q,N’
D, = Q;EN + Q,N’
D; = Q,EN + Qg

CSE370, Lecture 22

Preset; ,3 =0
Reset, = start’E'N
Reset, , ; = start + E'N

Dy = QpN’

D; = QeEN + Q;N’
D, = QEN + Q,N’
D3 = QEN + Q,

Preset, = start
Preset; ,; =0

Reset, = start’E'N
Reset, , ; = start + E'N

start’

4 r
o o= a1
a1 ck—p
N CLEN
T
3 5
’ b "™ o= @2
@ ck—
N
T
s!alt:{)D E:ED_l_‘D (:;
Q3 Clk—: i
=Dy
N CLEN
stk i

CSE370, Lecture 22

Last topic: more FSM optimization techniques

4 Want to optimize FSM for many reasons beyond state
minimization and efficient encoding

4 Additional techniques
m Pipelining --- allows faster clock speed
= Retiming --- can reduce registers or change delays
m Partitioning --- can divide to multiple devices, simpler logic

CSE370, Lecture 25 7

Pipelining related definitions

¢ Latency: Time to perform a computation
= Data input to data output

¢ Throughput: Input or output data rate
m Typically the clock rate

4 Combinational delays drive performance
m Define d = delay through slowest combinational stage
n = number of stages from input to output
m Latency cn*d (in sec)
m Throughput oc 1/d (in Hz)

CSE370, Lecture 25 8

Pipelining

¢ What?
m Subdivide combinational logic .
Logic Reg

= Add registers between logic
¢ Why? . I

m Trade latency for throughput
m Increased throughput
¥ Reduce logic delays

¥ Increase clock speed Logic Reg Logic Reg

m Increased latency

m Increase circuit utilization —l—l—l—l—
¥ Simultaneous computations

CSE370, Lecture 25 9

Reg Logic Reg

Pipelining

¢ When?
= Need throughput more than latency
¥ Signal processing
= Logic delays > setup/hold times 1
= Acyclic logic

¢ Where?
m At natural breaks in the
combinational logic
= Adding registers makes sense l

CSE370, Lecture 25 10

Retiming

Pipelining adds registers
m To increase the clock speed

4 Retiming moves registers around
= Reschedules computations to optimize performance
¥ Change delay patterns
¥ Reduce register count
= Without altering functionality

CSE370, Lecture 25 11

Retiming examples

4 Reduce register count

b%}Dg:DX = P

4 Change output delays

.) 31> et L*‘ = 3

4 H e D

:ihi T ! T :> 0 __1—%_} ~ _1 __ _‘["‘

oA gy

._:Zl__j - ! =
[-

CSE370, Lecture 25 12

FSM partitioning

¢ Break a large FSM into two or more smaller FSMs

4 Rationale
m Less states in each partition
¥ Simpler minimization and state assignment
¥ Smaller combinational logic
¥ Shorter critical path
= But more logic overall

& Partitions are synchronous
= Same clock!!!

CSE370, Lecture 25

13

Example: Partition the machine

& Partition into two halves

CSE370, Lecture 25

14

Introduce idle states

& SA and SB handoff control between machines
c1 ¢

I (CleS1+

(56)—
C1eS1
c2 /
i C3e52+

@ C3+52+
I C4eS3+ C4-53

i Ces2y \
NN

CSE370, Lecture 25 : 15

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

O @ 2l

Rule #2: Destination state transformation
Replace with exit transition from idle state

. c2 ‘ - . C2-S6 Q

CSE370, Lecture 25 16

Partitioning rules (con’t)

Rule #3: Multiple transitions with same source or destination
Source = Replace by transitions to idle state (SA)
Destination = Replace with exit transitions from idle state

c3 @ C3+C5 C3eS2 + e
@ ' C4eS3
AN RE ()
O O NN C SRy
C5eS

Rule #4: Hold condition for idle state
OR exit conditions and invert

C2-S6
(=2

CSE370, Lecture 25 17

Mealy versus Moore partitions

4 Mealy machines undesirable
= Inputs can affect outputs immediately
¥ “output” can be a handoff to another machine!!!

4 Moore machines desirable
= Input-to-output path always broken by a flip-flop
= But...may take several clocks for input to propagate to output

CSE370, Lecture 25 18

Example: Six-state up/down counter

4 Break into 2 parts

U = count up
D = count down

CSE370, Lecture 25 19

Example: 6 state up/down counter (con’t)

4 Count sequence S, Sy, S,, Sg, Sy, S
m S, goes to S, and holds, leaves after S¢
m S; goes to Sy and holds, leaves after S,
= Down sequence is similar

- S
i} oz a?;zs’fC o
N4

U
S
D D,
/

CSE370, Lecture 25 20

D
UeS2

Minimize communication between partitions

¢ ldeal world: Two machines handoff control
m Separate 1/0, states, etc.

4 Real world: Minimize handoffs and common 1/0
= Minimize number of state bits that cross boundary
= Merge common outputs

CSE370, Lecture 25 21

Done!

CSE370, Lecture 25 22

