Lecture 25 Last lecture

Logistics

- HW9 and Ant extra credit problem are due now
- All lab must be done by 6pm today.
- Review session tomorrow CSE403 11:30am
- Final Exam 6/9 here 8:30am

Today

- Review materials from the entire class
- Announcement of final exam extra credit problem
- Evaluation: me and Nikhil (leave last 15 min for this)
- Tomorrow: can take more questions and go over examples.

CSE370, Lecture 25

What you should know

- Combinational logic basics
 - Binary/hex/decimal numbers
 - Ones and twos complement arithmetic
 - Truth tables
 - Boolean algebra
 - Basic logic gates
 - Schematic diagrams
 - Timing diagrams
 - de Morgan's theorem
 - AND/OR to NAND/NOR logic conversion
 - K-maps (up to 4 variables), logic minimization, don't cares
 - SOP, POS
 - Minterm and maxterm expansions (canonical, minimized)

CSE370, Lecture 25 2

What you should know

- Combinational logic applications
 - Combinational design

 - ∠ K-map
 - **∠** Boolean equation
 - ✓ Schematics
 - Multiplexers/demultiplexers
 - PLAs/PALs
 - ROMs
 - Adders

CSE370, Lecture 25

3

What you should know

- Sequential logic building blocks
 - Latches (R-S and D)
 - Flip-flops (D and T)
 - Latch and flip-flop timing (setup/hold time, prop delay)
 - Timing diagrams
 - Asynchronous inputs and metastability
 - Registers

CSE370, Lecture 25

4

What you should know

- Counters
 - Timing diagrams
 - Shift registers
 - Ring counters
 - State diagrams and state-transition tables
 - Counter design procedure
 - 1. Draw a state diagram
 - 2. Draw a state-transition table
 - 3. Encode the next-state functions
 - 4. Implement the design
 - Self-starting counters

CSE370, Lecture 25

What you should know

- Finite state machines
 - Timing diagrams (synchronous FSMs)
 - Moore versus Mealy versus synchronized Mealy
 - FSM design procedure
 - 1. State diagram
 - 2. state-transition table
 - 3. State minimization
 - 4. State encoding
 - 5. Next-state logic minimization
 - 6. Implement the design
 - State minimization
 - One-hot / output-oriented encoding
 - FSM design guidelines
 - **∠** Separate datapath and control
 - Pipelining, retiming partitioning basics

CSE370, Lecture 25

Partitioning rules

Rule #1: Source-state transformation Replace by transition to idle state (SA)

Rule #2: Destination state transformation Replace with exit transition from idle state

CSE370, Lecture 25

Partitioning rules (con't)

Rule #3: Multiple transitions with same source or destination Source ⇒ Replace by transitions to idle state (SA) Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state OR exit conditions and invert

CSE370, Lecture 25

8

Example: 6 state up/down counter (con't)

- ◆ Count sequence S₀, S₁, S₂, S₃, S₄, S₅
 S₂ goes to S_A and holds, leaves after S₅
 S₅ goes to S_B and holds, leaves after S₂
 Down sequence is similar

CSE370, Lecture 25