Lecture 4

# Logistics
m Classroom permanently changed to this one, EEB105
m Lab2 is assigned today --- don't fall behind
= HW1 is due on Wednesday in class before lecture

# Last lecture --- Boolean algebra
= Axioms
= Useful laws and theorems
= Simplifying Boolean expressions

& Today’s lecture
= One more example of Boolean logic simplification
= Logic gates and truth tables
= Implementing logic functions
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One more example of logic simplification

& Example:
Z = A'BC + AB'C' + AB'C + ABC' + ABC
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Logic gates and truth tables
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Logic gates and truth tables (con’t)
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Boolean expressions C—> logic gates

& Example: F = (A*B)’ + C<D

CSE370, Lecture 4

Truth tables > logic gates

4 Given a truth table
= Write the Boolean expression
= Minimize the Boolean expression
= Draw as gates
= Example:
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Example: A binary full adder

4 1-bit binary adder
= Inputs: A, B, Carry-in
= Outputs: Sum, Carry-out
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Cout =
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Full adder: Sum

Before Boolean minimization
Sum = A'B'Cin + A'BCin'
+ AB'Cin' + ABCin
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After Boolean minimization

Sum = (A®B) @ Cin
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Full adder: Carry-out

Before Boolean minimization After Boolean minimization
Cout = A'BCin + AB'Cin Cout = BCin + ACin + AB
+ ABCin' + ABCin
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Many possible mappings
4 Many ways to map expressions to gates
= Example: Z=AeBe(C+D)= Ae Be(C+D)
A_[>°_ A 7
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What is the optimal gate realization?

4 We use the axioms and theorems of Boolean algebra
to “optimize” our designs

4 Design goals vary
m Reduce the number of gates?
= Reduce the number of gate inputs?
m Reduce number of chips and/or wire?

4 How do we explore the tradeoffs?
= CAD tools
= Logic minimization: Reduce number of gates and complexity
= Logic optimization: Maximize speed and/or minimize power

CSE370, Lecture 4 11

Minimal set

4 We can implement any logic function from NOT, NOR,

and NAND
m Example: (X and Y) = not (X nand Y)

# In fact, we can do it with only NOR or only NAND
= NOT is just NAND or NOR with two identical inputs

X Y | Xnory X Y| XnandY
0 O 1 0 O 1
11 0 1 1 0

= NAND and NOR are duals: Can implement one from the other
¥ X nand Y = not ((not X) nor (not Y))
¥ X nor Y = not ((not X) nand (not Y))
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