Lecture 4

- Logistics
 - Classroom permanently changed to this one, EEB105
 - Lab2 is assigned today --- don't fall behind
 - HW1 is due on Wednesday in class before lecture
- ◆ Last lecture --- Boolean algebra
 - Axioms
 - Useful laws and theorems
 - Simplifying Boolean expressions
- ◆ Today's lecture
 - One more example of Boolean logic simplification
 - Logic gates and truth tables
 - Implementing logic functions

CSE370, Lecture 4

One more example of logic simplification

Example:

Z = A'BC + AB'C' + AB'C + ABC' + ABC

CSE370, Lecture 4

Logic gates and truth tables

 X'

- ◆ AND X•Y XY
- X————z
- X Y Z 0 0 0 0 1 0 1 0 0 1 1 1

- ◆ OR X+Y
- $X \longrightarrow -z$
- X Y Z 0 0 0 0 1 1 1 0 1 1 1 1

- \bullet NOT \overline{X}
- x—____
- X Y 0 1 1 0

◆ Buffer X

- x———
- X Y 0 1

CSE370, Lecture 4

3

Logic gates and truth tables (con't)

- ◆ NAND
- \overline{XY}
- X Y Z 0 0 0 1 1 0 1 1

- ♦ NOR
- $\overline{X+Y}$

 $\overline{X \bullet Y}$

- x _____ z
- X Y Z
 0 0
 0 1
 1 0
 1 1

- ◆ XOR
- $X \oplus Y$
- X Y Z
 0 0
 0 1
 1 0
 1 1

- XNOR
- $\overline{X \oplus Y}$
- X -
- 1 1 | X Y Z 0 0 0 1 1 0 1 1

CSE370, Lecture 4

4

Boolean expressions \Longrightarrow logic gates

- Example: $F = (A \cdot B)' + C \cdot D$
- Example: $F = C \cdot (A+B)'$

CSE370, Lecture 4

Truth tables logic gates

- Given a truth table
 - Write the Boolean expression
 - Minimize the Boolean expression
 - Draw as gates
 - Example:

<u> </u>	١	В	С	F		
7)	0	0	0		
C)	0	1	0		
C)	1	0	1		
C)	1	1	1		
1	l	0	0	0		
1	l	0	1	1		
1	l	1	0	0		
1	l	1	1	1		
CSE370, Lecture 4						

- 1-bit binary adder
 - Inputs: A, B, Carry-in
 - Outputs: Sum, Carry-out

Α	В	Cin	S Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Sum =

Cout =

CSE370, Lecture 4

7

Many possible mappings

◆ Many ways to map expressions to gates

CSE370, Lecture 4

What is the optimal gate realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
 - Reduce the number of gates?
 - Reduce the number of gate inputs?
 - Reduce number of chips and/or wire?
- How do we explore the tradeoffs?
 - CAD tools
 - Logic minimization: Reduce number of gates and complexity
 - Logic optimization: Maximize speed and/or minimize power

CSE370, Lecture 4

Minimal set

- We can implement any logic function from NOT, NOR, and NAND
 - Example: (X and Y) = not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just NAND or NOR with two identical inputs

Х	Υ	X nor Y		X	Υ	X nand Y
0	0	1	()	0	1
1	1	0	•	1	1	0

- NAND and NOR are duals: Can implement one from the other
 - $\angle X$ nand Y = not ((not X) nor (not Y))
 - **∠** X nor Y = not ((not X) nand (not Y))

CSE370, Lecture 4 12