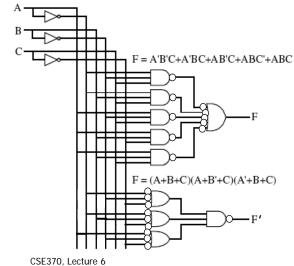
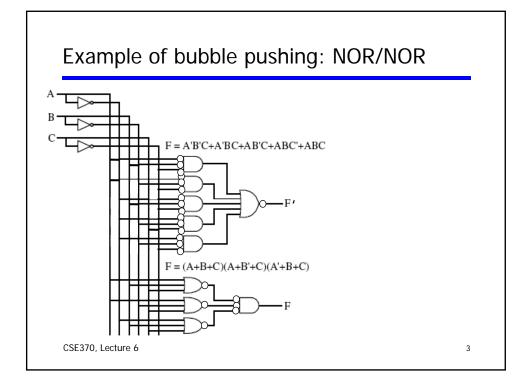
Lecture 6

- Logistics
 - HW2 out, due 4/16 Wednesday
 - Lab 2 ongoing
- Last lecture
 - Canonical forms
 - NAND and NOR
- ◆ Today's lecture
 - One more pushing bubble example
 - Logic simplification
 - **∠** Boolean cubes

CSE370, Lecture 6

Example of bubble pushing: NAND/NAND





Goal: Minimize two-level logic expression

- Algebraic simplification
 - not an systematic procedure
 - hard to know when we reached the minimum
- Computer-aided design tools
 - require very long computation times (NP hard)
 - heuristic methods employed "educated guesses"
- Visualization methods are useful
 - our brain is good at figuring things out over computers
 - many real-world problems are solvable by hand

Key tool: The Uniting Theorem

- ♦ The uniting theorem \rightarrow A(B'+B) = A
- The approach:
 - Find some variables don't change (the A's above) and others do (the B's above)
 - Eliminate the changing variables (the B's)

Α	В	F	_
0	0	1_	
0	11	1	
1	0	0	
1	1	0	

A has the same value in both "on-set" rows \Rightarrow keep A

B has a different value in the two rows ⇒ eliminate B

$$F = A'B' + A'B = A'(B+B') = A'$$

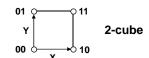
CSE370, Lecture 6

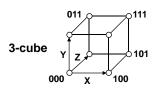
5

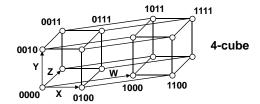
Boolean cubes

- Visualization tool for the uniting theorem
 - n input variables = n-dimensional "cube"

1-cube $0 \xrightarrow{1} X$





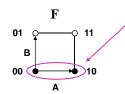


CSE370, Lecture 6

6

Mapping truth tables onto Boolean cubes

- ON set = solid nodes
- ◆ OFF set = empty nodes



Look for on-set adjacent to each other

Sub-cube (a line) comprises two nodes

A varies within the sub-cube; B does not

This sub-cube represents B'

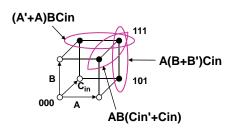
CSE370, Lecture 6

7

Example using Boolean cube

- ♦ Binary full-adder carry-out logic
 - On-set is covered by the OR of three 2-D subcubes

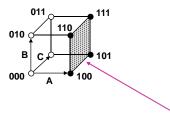
Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



Cout = BCin+AB+ACin

M-dimensional cubes in n-dimensional space

- ◆ In a 3-cube (three variables):
 - A 0-cube (a single node) yields a term in 3 literals
 - A 1-cube (a line of two nodes) yields a term in 2 literals
 - A 2-cube (a plane of four nodes) yields a term in 1 literal
 - A 3-cube (a cube of eight nodes) yields a constant term "1"



 $F(A,B,C) = \sum m(4,5,6,7)$

On-set forms a square (a 2-D cube)

A is asserted (true) and unchanging B and C vary

This sub-cube represents the literal A

CSE370, Lecture 6

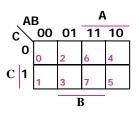
Karnaugh maps (K-map)

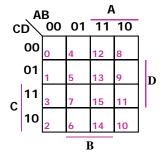
- Flat representation of Boolean cubes
 - Easy to use for 2– 4 dimensions
 - Hard for 4 6 dimensions
 - Virtually impossible for 6+ dimensions ✓ Use CAD tools
- Help visualize adjacencies
 - On-set elements that have one variable changing are adjacent

	Α	В	F
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

2, 3, and 4 dimensional K-maps

Uses Gray code: Only one bit changes between cells
Example: 00 → 01 → 11 → 10



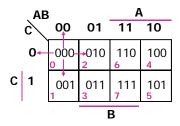


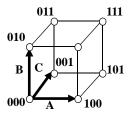
CSE370, Lecture 6

11

Adjacencies

- Wrap-around at edges
 - First column to last column
 - Top row to bottom row





CSE370, Lecture 6

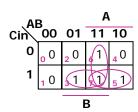
12

K-map minimization example: 2 variables

$$F = B'$$

CSE370, Lecture 6

K-map minimization example: 3 variables



$$Cout = AB + BCin + ACin$$

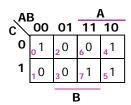
CSE370, Lecture 6

14

K-map minimization example: minterms

$$F(A,B,C) = \Sigma m(0,4,5,7)$$

= B'C'+AC



CSE370, Lecture 6

15

K-map minimization example: complement

$$F(A,B,C) = \Sigma m(0,4,5,7)$$

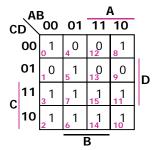
= B'C'+AC

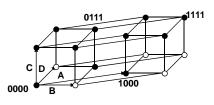
$$F'(A,B,C) = \Sigma m(1,2,3,6)$$

= A'C + BC'

K-map minimization example: 4 variables

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
 - Find the least number of subcubes, each as large as possible, that cover the ON-set

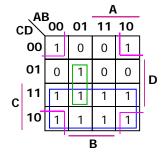


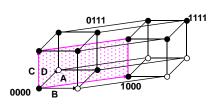


CSE370, Lecture 6 17

K-map minimization example: 4 variables

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
- ◆ Answer: F = C+A'BD+B'D'





K-map minimization examples: do it yourself

$$F(A,B,C) = \Sigma m(0,3,6,7)$$

$$F(A,B,C,D) = \Sigma m(0,3,7,8,11,15)$$

$$F(A,B,C) = F'(A,B,C) =$$

$$F(A,B,C,D) = F'(A,B,C,D) =$$

C AE	01	11	10
0			
1			

