CSE 370 – Winter 2008

Homework 3 – Solutions

Grading Breakdown:

1.	CLD-II, Chapter 2, problem 2.31, parts a and b (½ point for each SOP and POS Expression)	3
2.	CLD-II, Chapter 2, problem 2.35. (1.5 points for each correct expression)	3
3.	CLD-II, Chapter 2, problem 2.44. (Truth table: ½ point, Expressions: 4points, Conclusion ½ point)	6
4.	CLD-II, Chapter 3, problem 3.3, part a,b,c. (1 point per part)	3
5.	Design Problem	5
	Total	20

Additional Grading details:

Penalties:

-2 for non standard k-maps

Bonuses:

- +2 for word processed and printed work
- +1 for very neat handwritten work
- +2 for deep insight shown on problems
- +2 for a solution to a design or optimization problem that is 50% better than the average

Note: All bonuses and penalties are subject to a maximum score of 20 points and a minimum score of 0.

1) $W(A,B,C) = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$

SoP: $W = \overline{A}B + A\overline{B}$ PoS: $W = (A + B)(\overline{A} + \overline{B})$

 $X(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$

SoP: $X = \overline{B}\overline{C} + BC$

PoS: $X=(\overline{B}+C)(B+\overline{C})$

 $Y(A,B,C,D) = \overline{A}\,\overline{B}\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}\,\overline{C}D + \overline{A}\,\overline{B}\,C\overline{D} + \overline{A}\,\overline{B}\,CD + A\,\overline{B}\,\overline{C}\overline{D} + A\,\overline{B}\,C\overline{D}$

SoP: $X = \overline{A} \overline{B} + \overline{B} \overline{D}$ PoS: $X = (\overline{B})(\overline{A} + \overline{D})$

2) See truth table on page 17

 $d30 = m_3 m_0 + \overline{m_3} m_2 \overline{m_0}$

d31			n	1 3	_
	X	0 4	1	1 8	
	1	1 5	X 13	0 9	
 m	1 3	ر 1	X 15	0	m₀
m ₁	0 2	0 6	X 14	1	
		m	1 2		•

 $d31 = \overline{m_3} m_0 + m_3 \overline{m_0}$

3) Truth table for increment-by-one

I_3	I_2	I_1	I_o	O ₃	O_2	O_1	O_0		I_3	I_2	I_1	I_o	O ₃	O_2	O_1	O_0
0	0	0	0	0	0	0	1	•	1	0	0	0	1	0	0	1
0	0	0	1	0	0	1	0		1	0	0	1	1	0	1	0
0	0	1	0	0	0	1	1		1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0		1	0	1	1	1	1	0	0
0	1	0	0	0	1	0	1		1	1	0	0	1	1	0	1
0	1	0	1	0	1	1	0		1	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1		1	1	1	0	1	1	1	1
0	1	1	1	1	0	0	0		1	1	1	1	0	0	0	0

b) 03:

3:			₃	3	_
	0 0	0 4	1 12		,
	0 1	0 5	1	1] -
	0 3	1	0	1	₀
₁	0 2	0 6	1 14	1	
			2		_

$$O_3 = I_3 \, \overline{I_2} + I_3 \, \overline{I_1} + I_3 \, \overline{I_0} + \overline{I_3} \, I_2 \, I_1 \, I_0 \qquad \qquad O_2 = I_2 \, \overline{I_1} + I_2 \, \overline{I_0} + \overline{I_2} \, I_1 \, I_0$$

01:

--- l₂ ---

$$O_1 = I_1 \overline{I_0} + \overline{I_1} I_0$$

02:

		_	I	3	
	0 0	1 4	1	0 8	
	0 1	1 5	1	0 9	
	1 3	0 7	0	1 11	I ₀
 	0 2	1 6	1	0	
		[2		'

$$O_2 = I_2 \overline{I_1} + I_2 \overline{I_0} + \overline{I_2} I_1 I_0$$

00:

:				3	
	1 。	1 4	1	1 8	
	0 1	0 5	0	0 9	
	0 3	0 7	0	0	I ₀
Ï	1 2	1 6	1	1	
			,		

$$O_0 = \overline{I_0}$$

c) Product of Sums

$$\begin{split} O_3 &= (I_3 + I_2)(I_3 + I_1)(I_3 + I_0)(\overline{I_3} + \overline{I_2} + \overline{I_1} + \overline{I_0}) \\ O_2 &= (I_2 + I_1)(I_2 + I_0)(\overline{I_2} + \overline{I_1} + \overline{I_0}) \\ O_1 &= (I_1 + I_0)(\overline{I_1} + \overline{I_0}) \\ O_0 &= \overline{I_0} \end{split}$$

Both implementations are equal in their number of literals.

5. Design Problem

Truth Table	•	ß	Ņ	Σ	F
Min-term Number					
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

$$\clubsuit = A$$

$$\beta = B$$

$$\dot{N} = C$$

$$\Sigma =\! D$$

K-Map:

Basic Function:

$$AB' + BD + B'CD'$$

Cost of basic implementation:

2 inverters + 2 2i/p and gates + 1 3i/p And gate + 2 OR Gates

Cost: 4 + 30 + 35 + 30 = 99\$

Power: 8 + 20 + 15 + 20 = 63 uW

Area: 4 + 12 + 8 + 12 = 36 sq generic units

Make 2 of the above. Substitute with a 2i/p with 3i/p And gate.

Best Designs - For each metric

Lowest Cost												
Student	Company	Function implemented	Inverters	2 i/p and	3 i/p and	2 i/p or	Х	or	Cost	Power	Area	Product
Isac Myers	. - ß	(B'+D)[(A+B) + D'C]	2	2	0		3	0	79	58	34	1
_	Σ	(B'+D)[(A+B) + D'C]	5	1	0		4	0	85	70	40)
									164	128	74	1553408
Lowest Power							Т					
Student		Function implemented	Inverters	2 i/p and	3 i/p and	2 i/p or	Х	or	Cost	Power	Area	Product
Benjamin Lee	. - ß	(B'+D)[(A+B) + D'C]	2	2	0		3	0	79	58	34	1
	Σ	(B'+D)[(A+B) + D'C]	2	1	1		3	0	99	63	38	ò
	Total								178	121	70	1507660
Lowest Area												
Student		Function implemented	Inverters	2 i/p and	3 i/p and	2 i/p or	Х	or	Cost	Power	Area	Product
Benjamin Lee	♣ - ß	(B'+D)[(A+B) + D'C]	2	2	0		3	0	79	58	34	1
	Σ	(B'+D)[(A+B) + D'C]	2	1	1		3	0	99	63	38	6
	Total								178	121	70	1507660
Best Balanced D	esign											
Student		Function implemented	Inverters	2 i/p and	3 i/p and	2 i/p or	Х	or	Cost	Power	Area	
Benjamin Lee	. - ß	(B'+D)[(A+B) + D'C]	2	2	. 0		3	0	79	58	34	1
_	Σ	(B'+D)[(A+B) + D'C]	2	1	1		3	0	99	63	38	i i
	Total		4	3	1		6	0	178	121	70	1507660