CSE 370 - Winter 2008

Homework 3 - Solutions

Grading Breakdown:

1. CLD-II, Chapter 2, problem 2.31, parts a and b ($1 / 2$ point for each SOP and POS Expression)3
2. CLD-II, Chapter 2, problem 2.35.
3

(1.5 points for each correct expression)
3. CLD-II, Chapter 2, problem 2.44.

6
(Truth table: $1 / 2$ point, Expressions: 4points, Conclusion $1 / 2$ point)
4. CLD-II, Chapter 3, problem 3.3, part a,b,c. 3
(1 point per part)
5. Design Problem 5
Total 20

Additional Grading details:

Penalties:
-2 for non standard k-maps
Bonuses:
+2 for word processed and printed work
+1 for very neat handwritten work
+2 for deep insight shown on problems
+2 for a solution to a design or optimization problem that is 50% better than the average

Note: All bonuses and penalties are subject to a maximum score of 20 points and a minimum score of 0 .

1) $W(A, B, C)=\bar{A} B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+A \bar{B} C$

SoP: $\quad W=\bar{A} B+A \bar{B}$
PoS: $\quad W=(A+B)(\bar{A}+\bar{B})$

$$
X(A, B, C)=\bar{A} \bar{B} \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+A B C
$$

SoP: $\quad X=\bar{B} \bar{C}+B C$
PoS: $\quad X=(\bar{B}+C)(B+\bar{C})$

SoP: $\quad X=\bar{A} \bar{B}+\bar{B} \bar{D}$
PoS: $\quad X=(\bar{B})(\bar{A}+\bar{D})$
2) See truth table on page 17

3) Truth table for increment-by-one

\boldsymbol{I}_{3}	\boldsymbol{I}_{2}	$\boldsymbol{I}_{\mathbf{1}}$	\boldsymbol{I}_{0}	\boldsymbol{O}_{3}	\boldsymbol{O}_{2}	\boldsymbol{O}_{1}	\boldsymbol{O}_{o}		\boldsymbol{I}_{3}	\boldsymbol{I}_{2}	\boldsymbol{I}_{1}	\boldsymbol{I}_{o}	\boldsymbol{O}_{3}	\boldsymbol{O}_{2}	\boldsymbol{O}_{1}	\boldsymbol{O}_{o}
0	0	0	0	0	0	0	1		1	0	0	0	1	0	0	1
0	0	0	1	0	0	1	0		1	0	0	1	1	0	1	0
0	0	1	0	0	0	1	1		1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0		1	0	1	1	1	1	0	0
0	1	0	0	0	1	0	1		1	1	0	0	1	1	0	1
0	1	0	1	0	1	1	0		1	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1		1	1	1	0	1	1	1	1
0	1	1	1	1	0	0	0		1	1	1	1	0	0	0	0

b) O 3 :

$O_{3}=I_{3} \bar{I}_{2}+I_{3} \bar{I}_{1}+I_{3} \bar{I}_{0}+\bar{I}_{3} I_{2} I_{1} I_{0}$
$O_{2}=I_{2} \bar{I}_{1}+I_{2} \bar{I}_{0}+\bar{I}_{2} I_{1} I_{0}$

O1:
$--I_{3}$
00

$O_{1}=I_{1} \bar{I}_{0}+\bar{I}_{1} I_{0}$
$O_{0}=\bar{I}_{0}$
c) Product of Sums

$$
\begin{aligned}
& O_{3}=\left(I_{3}+I_{2}\right)\left(I_{3}+I_{1}\right)\left(I_{3}+I_{0}\right)\left(\bar{I}_{3}+\bar{I}_{2}+\bar{I}_{1}+\bar{I}_{0}\right) \\
& O_{2}=\left(I_{2}+I_{1}\right)\left(I_{2}+I_{0}\right)\left(\bar{I}_{2}+\bar{I}_{1}+\bar{I}_{0}\right) \\
& O_{1}=\left(I_{1}+I_{0}\right)\left(\bar{I}_{1}+\bar{I}_{0}\right) \\
& O_{0}=\bar{I}_{0}
\end{aligned}
$$

Both implementations are equal in their number of literals.
4)
a)

$$
f=\bar{W} \bar{X}+W X+\bar{Y} Z+Y \bar{Z}
$$

b)

$$
f=A C+\bar{A} \bar{C}
$$

c)

$$
f=\bar{A} \bar{B}+\bar{B} \bar{C} \bar{D}+B \bar{C} D
$$

5. Design Problem

Truth Table	*	B	N	Σ	F
Min-term Number					
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

\% A
$B=B$
$\mathrm{N}=\mathrm{C}$
$\Sigma=\mathrm{D}$

K-Map:

Basic Function:

$A B^{\prime}+B D+B^{\prime} C D^{\prime}$

Cost of basic implementation:
2 inverters $+22 \mathrm{i} / \mathrm{p}$ and gates $+13 \mathrm{i} / \mathrm{p}$ And gate +2 OR Gates
Cost: $4+30+35+30=99 \$$
Power: $8+20+15+20=63 \mathrm{uW}$
Area: $4+12+8+12=36$ sq generic units
Make 2 of the above. Substitute with a $2 \mathrm{i} / \mathrm{p}$ with $3 \mathrm{i} / \mathrm{p}$ And gate.

Best Designs - For each metric

Lowest Cost											
Student	Company	Function implemented	Inverters	$2 \mathrm{i} / \mathrm{p}$ and	$3 \mathrm{i} / \mathrm{p}$ and	$2 \mathrm{i} / \mathrm{p}$ or	xor	Cost	Power	Area	Product
Isac Myers	$\pm-\beta$	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	2	0	3	0	79	58	34	
	Σ	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	5	1	0	4	0	85	70	40	
								164	128	74	1553408
Lowest Power											
Student		Function implemented	Inverters	$2 \mathrm{i} / \mathrm{p}$ and	$3 \mathrm{i} / \mathrm{p}$ and	$2 \mathrm{i} / \mathrm{p}$ or	xor	Cost	Power	Area	Product
Benjamin Lee	$\pm-\beta$	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	2	0	3	0	79	58	34	
	Σ	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	1	1	3	0	99	63	36	
	Total							178	121	70	1507660
Lowest Area											
Student		Function implemented	Inverters	$2 \mathrm{i} / \mathrm{p}$ and	$3 \mathrm{i} / \mathrm{p}$ and	$2 \mathrm{i} / \mathrm{p}$ or	xor	Cost	Power	Area	Product
Benjamin Lee	$\pm-\beta$	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	2	0	3	0	79	58	34	
	Σ	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	1	1	3	0	99	63	36	
	Total							178	121	70	1507660
Best Balanced Design											
Student		Function implemented	Inverters	$2 \mathrm{i} / \mathrm{p}$ and	$3 \mathrm{i} / \mathrm{p}$ and	$2 \mathrm{i} / \mathrm{p}$ or	xor	Cost	Power	Area	
Benjamin Lee	$\pm-\beta$	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	2	0	3	0	79	58	34	
	Σ	$\left(B^{\prime}+D\right)\left[(A+B)+D^{\prime} C\right]$	2	1	1	3	0	99	63	36	
	Total		4	3	1	6	0	178	121	70	1507660

