Exam \#1 Solutions

1. (10 points) Express -36_{10} as an 8 -bit twos-complement binary number.

Answer: $\begin{array}{llllllll}\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathrm{msb} & & & & & \text { lsb }\end{array}$
2. (10 points) Find the complement of F. Do not simplify the expression.

$$
\mathrm{F}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{A}^{\prime} \mathrm{D}^{\prime}+\mathrm{E}\right)+\left(\mathrm{AC}^{\prime}+\mathrm{BD}\right)\left[\left(\mathrm{C}+\mathrm{E}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{D}\right)+0\right]
$$

Using the set of rules for complement, this turns out to be a one-step process. We get

$$
F^{\prime}=\left[A^{\prime} B+(A+D) E^{\prime}\right]\left[\left(A^{\prime}+C\right)\left(B^{\prime}+D^{\prime}\right)+\left(C^{\prime} E+B D^{\prime}\right) 1\right]
$$

3. (10 points) Find the dual of F. Do not simplify the expression.

$$
\mathrm{F}=\mathrm{AB}+\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{B}+\mathrm{E}^{\prime}\right)\left[\mathrm{D}^{\prime} \mathrm{E}\left(\mathrm{~A}^{\prime}+\mathrm{B}\right)+1\right]
$$

Using the set of rules for duals, this turns out to be a one-step process. We get

$$
F_{D}=(A+B)\left[A^{\prime} C+B E^{\prime}+\left(D^{\prime}+E+A^{\prime} B\right) 0\right]
$$

4. A leading medical electronics company is designing a logic network that will perform preliminary diagnosis on patients based on the presence or absence of four symptoms ABCD. The diseases to be diagnosed are XYZ, and their relationship with the symptoms is as follows -

ABCD	XYZ
0000	000
0001	110
0010	000
0011	100
0100	110
0101	001
0110	011
0111	100

ABCD	XYZ
1000	010
1001	110
1010	111
1011	111
1100	010
1101	011
1110	000
1111	100

a) (15 points) Draw the K -maps for X, Y and Z to implement this network as a 4-input 3-output system:

b) (15 points) Find the minimum 2-level AND-OR expressions to implement this system:

$$
\begin{aligned}
& X=C D+A B^{\prime} C+A^{\prime} B C^{\prime} D^{\prime}+B^{\prime} \not \varnothing^{\prime} D \\
& Y=A^{\prime} C+A B^{\prime} \not \subset+A^{\prime} B D^{\prime}+B^{\prime} C^{\prime} D \\
& Z=A B^{\prime} C+A^{\prime} B C D^{\prime}+B C^{\prime} D
\end{aligned}
$$

5. Given the function: $\quad \boldsymbol{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,2,8,9,11,15)+D(1,3,6,7)$
a) (10 points) Draw and label a K-Map of the function and circle the elements of the on-set that correspond to a minimized expression for \boldsymbol{F}

b) (15 points) Find the minimum SOP form of the function.
$\mathbf{A}^{\prime} \mathbf{B}^{\prime}+\mathbf{B}^{\prime} \mathbf{C}^{\prime}+\mathbf{C D}$ or $\mathbf{A}^{\prime} \mathbf{C}+\mathbf{B}^{\prime} \mathbf{C}^{\prime}+\mathbf{C D}$
c) (15 points) Write a verilog module that implements your SOP form:
module somename (X,A,B,C,D);
input A,B,C,D;
output X;
assign $\mathrm{X}=\sim \mathrm{A} \& \sim \mathrm{~B}|\sim \mathrm{~B} \& \sim \mathrm{C}| \mathrm{C} \& \mathrm{D}$;
endmodule
or
module somename ($\mathrm{X}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$);
input A,B,C,D;
output X;
$\operatorname{assign} \mathrm{X}=\sim \mathrm{A} \& \mathrm{C}|\sim \mathrm{B} \& \sim \mathbf{C}| \mathrm{C} \& \mathrm{D}$;
endmodule
