CSE 370 MIDTERM 1 SOLUTIONS Spring 2009

1. (15 points)
(a) What is the largest (most positive) 5-bit twos-complement number?
$01111_{2}=15$
(b) What is the smallest (most negative) 5-bit twos-complement number?

15 positive numbers and zero make 16 non-negative numbers. 5 bits can represent 32 numbers. Thus, there are 16 negative numbers. -16 would be the most negative.
(c) Using as many bits as are necessary, write -21 in twos-complement.

Have to use 6 bits, because 5 bits ranges from -16 to 15 .
+21 is 010101 , so -21 is 101011
2. (15 points) Add $3 \mathrm{~F} 4_{16}+6 \mathrm{C} 8_{16}$.
(a) Write your answer in hexadecimal.

ABC
(b) Write your answer in octal.

5274
(c) Write your answer in binary.

101010111100
3. (10 points) Find the complement of $(A+B+C) \bar{D}+\overline{E F}(G+\bar{H})$. Only simplify double negations. Do not simplify further.

$$
(\bar{A} \bar{B} \bar{C}+D)(E F+\bar{G} H)
$$

4. (15 points) Simplify $F=J \bar{J}+H(O K R W+O W)+R+\bar{A} U+A U$ using Boolean algebra. Clearly show each step. You do not need to label the rules used.

$$
\begin{aligned}
& =0+H(O K R W+O W)+R+\bar{A} U+A U \\
& =H(O K R W+O W)+R+\bar{A} U+A U \\
& =H(O W(K R+1))+R+\bar{A} U+A U \\
& =H(O W(1))+R+\bar{A} U+A U \\
& =H O W+R+\bar{A} U+A U \\
& =H O W+R+(\bar{A}+A) U \\
& =H O W+R+(1) U \\
& =H O W+R+U
\end{aligned}
$$

5. (20 points) Let $F(A, B, C, D, E)=C D E+A B \bar{C} D+A B C D E$
(a) Write the minterm expansion of F .

$$
\bar{A} \bar{B} C D E+\bar{A} B C D E+A \bar{B} C D E+A B C D E+A B \bar{C} D E+A B \bar{C} D \bar{E}
$$

(b) Write the shorthand (little m notation) expression for F .

$$
\sum m(7,15,23,26,27,31)
$$

(c) For the canonical sum-of-products form, how many OR and AND gates do you need? In your answer, specify the number of inputs for those gates (e.g. "one three-input OR gate and two two-input AND gates").

65 -input AND gates, 16 -input OR gate
(d) For the canonical product-of-sums form, how many OR and AND gates do you need? In your answer, specify the number of inputs for those gates.

26 5-input OR gates, 126 -input AND gate
6. (20 points) Let $F(A, B, C)=A B \bar{C}+\bar{A} \bar{B}+C$. Draw the logic circuit for F . You may assume that variables and their complements are available as inputs.
(a) Use only OR/AND gates.

(b) Use only NAND gates.

(c) Use only NOR gates.

7. (10 points) Draw the K-map for the following truth table.

A	B	C	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	X
0	0	1	1	0
0	1	0	0	1
0	1	0	1	X
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	0
1	1	0	1	1
1	1	1	0	X
1	1	1	1	0

0	1	0	X
1	X	1	0
0	1	0	X
X	0	X	1

8. (10 points) Identify all the sub-cubes (max size, min number) in the following K-map and write the minimized sum-of-products expression. There may be more than one right answer.

0	1	X	0		
1	0	X	X		
1	X	0	X		
X	0	0	X	\quad	$\bar{B} D+B \bar{C} \bar{D}$,
:---:					

9. (10 points) Identify all the sub-cubes (max size, min number) in the following K-map and write the minimized product-of-sums expression. There may be more than one right answer.

10. (15 points) Let $F=\Pi M(1,3,4,5,9,11,13)$. Express F using one $8: 1$ multiplexer. You may assume that variables and their complements are available as inputs.

11. (10 points) Let $F=\prod M(0,1,3,4,5,7)$. Express F using one demultiplexer and one OR gate. Don't forget the enable signal.

