CSE 370

1. (15 points)

(b) Which input transitions (e.g., "From X to Y") could potentially cause a glitch to occur? 011 to 111 (and vice versa)

It is incorrect to just say from A to A^{\prime}.
(c) Redraw the circuit so that it is free of the hazard type answered in (a).

2. (15 points)
(a) Given the following K-map for a function F , write the minimized product-of-sums expression for F .

(b) Which input transitions (e.g., "From X to Y") could potentially cause a glitch to occur?

1011 to 1010 (and vice versa)
(c) Write a minimized product-of-sums expression for F that is free of static-0 hazards.

$$
(C+D)(B+D)(\bar{A}+\bar{C}+\bar{D})(\bar{A}+B+\bar{C})
$$

3. (35 points)
(a) Fill out the timing diagram for the following circuit. The clock period is 10 ns as marked on the diagram. Assume that the D flip-flop has no setup time, a 1 ns hold time, and a 2 ns propagation delay. The inverter and the AND gate have a gate delay of 1 ns each. As shown on the timing diagram, assume that all signal rise and fall times are instantaneous. The starting values for the wires and flip-flop are marked in the diagram.

(b) Write the state transition table for the circuit above.

or

4. (25 points)

J	K	Q	$\mathrm{Q}+$	T
0	0	0	0	\mathbf{O}
0	0	1	1	0
0	1	0	0	\mathbf{O}
0	1	1	0	$\mathbf{1}$
1	0	0	1	$\mathbf{1}$
1	0	1	1	\mathbf{O}
1	1	0	1	$\mathbf{1}$
1	1	1	0	\mathbf{I}

(a) Implement the state transition table above using one D flip-flop and any other gates you may need.

(b) Implement the state transition table above using one T flip-flop and any other gates you

5. (60 points) Build a counter that goes through the following sequence: $010-011-100-111$ and then repeats.
(a) Show the following:
(i) State diagram
(ii) State transition table
(iii) Minimized next-state functions
(iv) Circuit implementation
(i) State diagram

(ii) State transition table

(iv) Circuit implementation

(c) Is the counter self-starting? Why or why not?

Yes. The non-counter states are $000,001,101$, and 110 . Based on our next-state functions, these states transition to $111,100,110$, and 011 respectively. Thus, all non-counter states eventually reach valid counter states.

