CSE 370

1. (15 points)

(b) Which input transitions (e.g., "From X to Y") could potentially cause a glitch to occur?011 to 111 (and vice versa)

It is incorrect to just say from A to A'.

(c) Redraw the circuit so that it is free of the hazard type answered in (a).

2. (15 points)

(a) Given the following K-map for a function F, write the minimized *product-of-sums* expression for F.

(b) Which input transitions (e.g., "From X to Y") could potentially cause a glitch to occur?

- 1011 to 1010 (and vice versa)
- (c) Write a minimized *product-of-sums* expression for F that is free of static-0 hazards.

 $(C+D)(B+D)(\overline{A}+\overline{C}+\overline{D})(\overline{A}+B+\overline{C})$

3. (35 points)

(a) Fill out the timing diagram for the following circuit. The clock period is 10 ns as marked on the diagram. Assume that the D flip-flop has no setup time, a 1 ns hold time, and a 2 ns propagation delay. The inverter and the AND gate have a gate delay of 1 ns each. As shown on the timing diagram, assume that all signal rise and fall times are instantaneous. The starting values for the wires and flip-flop are marked in the diagram.

4. (25 points)

J	Κ	Q	Q+	T
0	0	0	0	Ο
0	0	1	1	Ö
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

_

(a) Implement the state transition table above using one D flip-flop and any other gates you may need.

(b) Implement the state transition table above using one T flip-flop and any other gates you may need.

- 5. (60 points) Build a counter that goes through the following sequence: 010 011 100 111 and then repeats.
 - (a) Show the following:
 - (i) State diagram
 - (ii) State transition table
 - (iii) Minimized next-state functions
 - (iv) Circuit implementation

(i) State diagram

.

(ii) State transition table

ABC	$A^{\dagger} B^{\dagger} C^{\dagger}$
000 001 010 011 100 101 10	X X X X X X O I I I O O I II X X X X X X O I O

(iii) Minimized next-state functions

(iv) Circuit implementation

(c) Is the counter self-starting? Why or why not?

Yes. The non-counter states are 000, 001, 101, and 110. Based on our next-state functions, these states transition to 111, 100, 110, and 011 respectively. Thus, all non-counter states eventually reach valid counter states.

