Lecture 2: Number Systems

- Binary numbers
- Base conversion
- Arithmetic
- Number systems
- Sign and magnitude
- Ones-complement
- Twos-complement
- Binary-coded decimal (BCD)

Base conversion from binary

- Conversion to octal / hex
- Binary: 10011110001
- Octal: $\quad 10|011| 110 \mid 001=2361_{8}$
- Hex: $\quad 100|1111| 0001=4 \mathrm{~F}_{16}$
- Conversion to decimal
- $101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5_{10}$

Base conversion from decimal

Binary			Octal		
	Quotient	Remainder		uotient	Remainder
$56 \div 2=$	28	0	$56 \div 8=$	7	0
$28 \div 2=$	14	0	$7 \div 8=$	0	7
$14 \div 2=$	7	0			
$7 \div 2=$	3	1			
$3 \div 2=$	1	1	$56_{10}=1$	000_{2}	
$1 \div 2=$	0	1	$56_{10}=7$		

- $\mathrm{N}=56_{10}=111000_{2}$
- Quotient $=\mathrm{N} / 2=56 / 2=111000 / 2$
= 11100 remainder 0
- Each successive division "liberates" a least significant bit

Negative numbers

- How do we write negative binary numbers?
- Prefix numbers with minus symbol?
- 3 approaches:
- Sign and magnitude
- Ones-complement
- Twos-complement
- All 3 approaches represent positive numbers in the same way

Sign and magnitude

- Most significant bit (MSB) is the sign bit
- $0 \equiv$ positive
- 1 ミnegative
- Remaining bits are the number's magnitude

Sign and magnitude

- Problem 1: Two representations of for zero
- +0 = 0000 and also -0 = 1000
- Problem 2: Arithmetic is cumbersome - $4-3$! $=4+(-3)$

Add		Subtract			Compare and subtract		
4	0100	4	0100	0100	-4	1100	1100
+3	+0011	-3	+1011	-0011	+3	+0011	-0011
$=7$	$=0111$	$=1$	$\neq 1111$	$=0001$	-1	$\neq 1111$	$=1001$

Ones-complement

- Negative number: Bitwise complement of positive number
- $0111 \equiv 7_{10}$
- $1000 \equiv-7_{10}$

- Solves the arithmetic problem

Add		Invert, add, add carry	Invert and add	
4	0100	40100	- 4	1011
+3	+0011	$-3+1100$	+3	+ 0011
$=7$	$=0111$	$\begin{array}{\|c\|r} \hline=1 & 10000 \\ \text { add carry: } & \\ \hline \end{array}$	-1	1110
		$=0001$		

Why ones-complement works

- Adding representations of x and $-y$ where x, y are positive numbers, we get $x+\left(\left(2^{4}-1\right)\right.$
$-y)=\left(2^{4}-1\right)+(x-y)$
- If $x<y$, then $x-y<0$. There will be no carry from $\left(2^{4}-1\right)+(x-y)$. Just add representations to get correct negative number.
- If $x>y$, then $x-y>0$. There will be a carry. Performing end-around carry subtracts 2^{4} and adds 1 , subtracting $\left(2^{4}-1\right)$ from $\left(2^{4}-1\right)+(x-$ y)
- If $x=y$, then answer should be 0 , get $\left(2^{4}-1\right)=$ 1111_{2}
- Still have two representations for zero!
- $+0=0000$ and also $-0=1111$

Why twos-complement works

- Recall: The ones-complement of $a b$ bit positive number y is $\left(2^{b}-1\right)-y$
- Twos-complement adds one to the bitwise complement, thus, $-y$ is $2^{b}-y$
- $-y$ and $2^{b}-y$ are equal mod 2^{b} (have the same remainder when divided by 2^{b})
- Ignoring carries is equivalent to doing arithmetic $\bmod 2^{b}$

- Answers only correct mod 2^{b}
- Summing two positive numbers can give a negative result
- Summing two negative numbers can give a positive result

Miscellaneous

- Sign-extension
- Write +6 and -6 as twos-complement - 0110 and 1010
- Sign-extend to 8-bit bytes
- 00000110 and 11111010
- Can't infer a representation from a number
- 11001 is 25 (unsigned)
- 11001 is -9 (sign and magnitude)
- 11001 is -6 (ones complement)
- 11001 is -7 (twos complement)

