Lecture 3: Boolean Algebra

- Boolean algebra
- Axioms
- Useful laws and theorems
- Examples

Boolean algebra

- A Boolean algebra consists of...
- a set of elements B
- binary operators (+, •)
- unary operator (' or ${ }^{-}$)

Binary logic

- Axioms hold for binary logic where
- $B=\{0,1\}$
\circ • \rightarrow AND
$\circ+\rightarrow \mathrm{OR}$
${ }^{\circ} \cdot \rightarrow$ NOT
- A Boolean function maps some number of inputs over $\{0,1\}$ into an output set $\{0,1\}$

Boolean expressions

- Any logic function that is expressible as a truth table can be written in Boolean algebra.

Precedence

1. Parentheses
2. NOT
3. AND
4. OR

Example: $\quad \overline{\mathrm{A}}+\mathrm{B} \cdot \overline{\mathrm{C}}=(\overline{\mathrm{A}})+(\mathrm{B} \cdot(\overline{\mathrm{C}}))$

- Duality (a meta-theorem-a theorem about theorems)
- All Boolean expressions have logical duals
- Any theorem that can be proved is also proved for its dual
- Replace: • with + , + with •, 0 with 1 , and 1 with 0
- Leave the variables unchanged
- Example:

The dual of $\quad X+0=X \quad$ is $\quad X \cdot 1=X$

Useful laws and theorems

- Commutative
$X+Y=Y+X \quad$ Dual: $X \cdot Y=Y \cdot X$
- Associative
$X+(Y+Z)=(X+Y)+Z \quad$ Dual: $X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
- Distributive $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$ Dual: $X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
- Uniting
$X \cdot Y+X \cdot Y=X \quad$ Dual: $(X+Y) \cdot(X+Y)=X$
Useful laws and theorems
- Absorption
$X+X \cdot Y=X \quad$ Dual: $X \cdot(X+Y)=X$
$(X+Y) \cdot Y=X \cdot Y \quad$ Dual: $(X \cdot Y)+Y=X+Y$
- Consensus
$X \cdot Y+Y \cdot Z+X \cdot Z=X \cdot Y+X \cdot Z$
Dual: $(X+Y) \cdot(Y+Z) \cdot(X+Z)=(X+Y) \cdot(X+Z)$
- Multiplying and factoring
$(X+Y) \cdot(X+Z)=X \cdot Z+X \cdot Y$
Dual: $X \cdot Y+X \cdot Z=(X+Z) \cdot(X+Y)$

DeMorgan's law

- Procedure for complementing Boolean functions
- Replace: • with +, + with •, 0 with 1 , and 1 with 0
- Replace all variables with their complements
- Look familiar?
- Duality: "Leave the variables unchanged"
- However, duality and DeMorgan's are NOT the same thing
- Example:

The complement of $\quad \mathrm{F}=X \cdot \bar{Y} \quad$ is $\quad \overline{\mathrm{F}}=\bar{X}+Y$

Proving theorems

- Example 1: Uniting theorem
$X \cdot Y+X \cdot Y=X \cdot(Y+Y) \quad$ Distributive
$=X \cdot(1) \quad$ Complementarity
$=X \quad$ Identity
- Example 2: Absorption $X+X \cdot Y=X \cdot 1+X \cdot Y$

Identity
$=X \cdot(1+Y)$
Distributive
Null
Identity

Proving theorems

- Example 3: Consensus
$X \cdot Y+Y \cdot Z+X \cdot Z$
$=X Y+(1) Y Z+X Z$
$=X Y+(X+X) Y Z+X Z$
$=X Y+X Y Z+X Y Z+X Z$
Identity
Complementarity
$\{A B+A=A\}$ with $A=X Y$ and $B=Z$
$=X Y+X Z \quad$ Absorption
$\{A B+A=A\}$ with $A=X Z$ and $B=Y$

```
Z = A'BC + AB'C' + AB'C + ABC' + ABC
    = A'BC + AB'(C' + C) +AB(C' + C) Distributive
    = A'BC + AB'(1) +AB(1) Complementarity
    = A'BC + AB' + AB Identity
    = A'BC + A(B' + B) Distributive
    = A'BC + A(1) Complementarity
    = A'BC + A Identity
    = BC + A Absorption
        {(X\cdotY)+Y=X+Y} with }X=BC\mathrm{ and }Y=
```

