## [Logic gates and truth tables ]

- Logic gates and truth tables
- Implementing logic functions
- Canonical forms
- Sum-of-products
- Product-of-sums
- AND

- OR

- NOT
$\qquad$

$$
\begin{array}{l|l}
\mathrm{X} & \mathrm{Y} \\
\hline 0 & 1 \\
1 & 0
\end{array}
$$



## Realizing Boolean formulas

- $\mathrm{F}=(\mathrm{A} \cdot \mathrm{B})^{\prime}+\mathrm{C} \cdot \mathrm{D} \quad-\mathrm{F}=\mathrm{C} \cdot(\mathrm{A}+\mathrm{B})^{\prime}$
[Realizing truth tables
- Given a truth table

1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates




## Full adder: Sum




## [What is the optimal realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
- Reduce the number of gates?
- Reduce the number of gate inputs?
- Reduce the number of cascaded levels of gates?


## What is the optimal realization?

- How do we explore the tradeoffs?
- Logic minimization: Reduce number of gates and complexity
- Logic optimization: Maximize speed and/or minimize power
- CAD tools


## Canonical forms

- Canonical forms
- Standard forms for Boolean expressions
- Derived from truth table
- Generally not the simplest forms (can be minimized)
- Two canonical forms
- Sum-of-products (minterms)
- Product-of-sums (maxterms)



- Variables appear exactly once in each maxterm in true or inverted form (but not both)

| $A$ | $B$ | $C$ | maxterms |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $A+B+C$ | M0 |
| 0 | 0 | 1 | $A+B+C^{\prime}$ | M1 |
| 0 | 1 | 0 | $A+B^{\prime}+C$ | M2 |
| 0 | 1 | 1 | $A+B^{\prime}+C^{\prime}$ | M3 |
| 1 | 0 | 0 | $A^{\prime}+B+C$ | M4 |
| 1 | 0 | 1 | $A^{\prime}+B+C^{\prime}$ | M5 |
| 1 | 1 | 0 | $A^{\prime}+B^{\prime}+C$ | M6 |
| 1 | 1 | 1 | $A^{\prime}+B^{\prime}+C^{\prime}$ | M7 |

F in canonical form:
$F(A, B, C)=\Pi M(0,2,4)$
$=M 0 \cdot M 2 \cdot M 4$
$=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$

19


## From SOP to POS and back

- Minterm to maxterm
- Use maxterms that aren't in minterm expansion
- $F(A, B, C)=\sum m(1,3,5,6,7)=\Pi M(0,2,4)$
- Maxterm to minterm
- Use minterms that aren't in maxterm expansion
- $F(A, B, C)=\Pi M(0,2,4)=\sum m(1,3,5,6,7)$


## SOP, POS, and DeMorgan's

- Sum-of-products
- $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Apply DeMorgan's to get POS
- ( $\left.F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$


## SOP, POS, and DeMorgan's

- Product-of-sums
- $\mathrm{F}^{\prime}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$
- Apply DeMorgan's to get SOP
- ( $\left.\mathrm{F}^{\prime}\right)^{\prime}=\left(\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C$

