Lecture 5

- Converting to use NAND and NOR
- Minimizing functions using Boolean cubes
- Can implement any logic function from NOT, NOR, and NAND
- In fact, can do it with only NORs and NANDs
- NOT is just NAND or NOR with two identical inputs

Why NAND/NOR?

- NAND/NOR preferred for real hardware implementation
- More efficient (less switches per gate)
- But how do we convert from the canonical forms that are expressed in AND/OR?

NOR is equivalent to AND with inputs complemented

NAND/NOR truth tables

$x^{\prime}+y^{\prime}=x^{\prime} \cdot r$

Converting to NAND/NOR

- Introduce inversions ("bubbles")
- Introduce bubbles in pairs
- Conserve inversions
- Do not alter logic function

[Goal: Logic minimization

- Algebraic simplification
- Not a systematic procedure
- Hard to know when we reached the minimum
- Computer-aided design tools
- Require very long computation times (NP hard)
- Heuristic methods employed-"educated guesses"

Goal: Logic minimization

- Visualization methods are useful
- Our brain is good at figuring "simple" things out
- Many real-world problems are solvable by hand

Key tool: Uniting Theorem

- Uniting theorem: $A\left(B^{\prime}+B\right)=A$
- The approach:
- Find where some variables don't change (the A's above) and others do (the B's above)
- Eliminate the changing variables (the B's)

A	B	F	
0	0	1	A has the same value in both "on-set" rows
0	1	1	\Rightarrow keep A
1	0	0	B has a different value in the both rows
1	1	0	\Rightarrow eliminate \mathbf{B}

Example

- Changed one bit from the previous function
- On-set is covered by the OR of one 2-D subcube and one 3-D subcube

A	B	Cin	D
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$\left(A^{\prime}+A\right) B C i n$

$D=B C i n+A$

