
1

Lecture 15

� Registers
� Counters
� Finite State Machine (FSM) design

2

Registers

� Group of storage elements read/written as a
unit
� Store related values (e.g. a binary word)

� Collection of flip-flops with common control
� Share clock, reset, set lines

� Example:
� Storage registers
� Shift registers
� Counters

3

Storage registers

� Basic storage registers use flip-flops
� Example: 4 bit storage register

R S R S
D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R SR S
D Q

"0"

4

Shift registers

� Hold successively sampled input
values
� Delays values in time

� Example: 4-bit shift register
� Stores 4 input values in sequence

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

5

Shift register applications

� Parallel-to-serial conversion for signal
transmission

� Pattern recognition (circuit recognizes 1001)

parallel inputs

parallel outputs
serial transmission

CLK CLK

D Q D Q D Q D QIN

CLK

OUT

6

Counters: Ring counter

� Ring counter: Sequence is 1000, 0100,
0010, 0001
� Assuming one of these patterns is the

starting state

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

7

Counters: Johnson counter

� Johnson counter: Sequence is 1000,
1100, 1110, 1111, 0111, 0011, 0001,
0000

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

8

Counters: Binary counter

� Has logic between flip-flops

D Q D Q D Q D Q

OUT0 OUT1 OUT2 OUT3

CLK

"1”

D0 D1 D2 D3

Flip low-order bit
each clock cycle

Flip next bit in
cycle when low-
order bit is 1

Flip next bit
when both lower
order bits are 1

Flip next bit
when all lower
order bits are 1

9

Storing "states" for FSMs

� Combinational logic and storage elements
� Localized feedback loops
� Choice of storage elements alters the logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

10

Finite-state machines (FSMs)

� States: Possible storage-element
values

� Transitions: Changes in state
� Clock synchronizes the state changes

� Sequential logic
� Sequences through a series of states

� Based on inputs and present state

11

FSM design example: Counters

1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions

� Minimize the logic using k-maps

4. Implement the design

12

1. Draw a state diagram

010

100

110

011001

000

101111

3-bit up-counter

13

2. Draw a state-transition table

� Like a truth-table
� State encoding is easy for counters →

Use count value
current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

14

3. Encode next state functions

� Assume D flip-flops as state elements

N1 := C1'

N2 := C1C2' + C1'C2
:= C1 xor C2

N3 := C1C2C3' + C1'C3 + C2'C3
:= C1C2C3' + (C1' + C2')C3
:= (C1C2) xor C3

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

0 0 1 1

0 1 0 1

C2

C3

C1

N3

1 1 1 1

0 0 0 0

C2

C3

C1

N1

0 1 1 0

1 0 0 1

C2

C3

C1

N2

15

4. Implement the design

� 3 flip-flops hold state
� Counter is synchronously clocked

� Minimized logic computes next state

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"
16

What if we use T flip-flops?

T flip-flops

T Q

C2 C1 C0 N2 N1 N0 T2 T1 T0
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

0
0
0
1
0
0

0
1

0
1
0
1

0
1
0
1

1
1
1
1

1
1
1
1

C1

C2

C0

T2

0 0 0 0
0 1 1 0

C1

C2

C0

T1

0 0 0 0
1 1 1 1

C1

C2

C0

T0

1 1 1 1
1 1 1 1T0 :=

T1 :=

T2 := C0 C1

C0

1

Ti = 1 iff Ni ≠ Ci

17

4. Implement the design

T Q T Q T Q

C0 C1 C2

CLK

1

18

Example: 5-state counter

� Counter repeats 5 states in sequence
� Sequence is 000, 010, 011, 101, 110, 000

000

010

011

101

110

Step 1: State diagram Step 2: State transition table
Assume D flip-flops

C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 X X X
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 X X X
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 X X X

Present State Next State

19

3. Encode next state functions

C

B

A

0 0 0 X

X 1 X 1

C+ C

B

A

1 1 0 X

X 0 X 1

B+ C

B

A

0 1 0 X

X 1 X 0

A+

A+ = BC'C+ = A B+ = B' + A'C'

20

4. Implement the design

D Q D Q D QC B A

CLK

A

A'
C'
B'

B
C'

Recall that a D flip flop also produces Q’ so A’, B’, and C’
would all be available without any extra inverters

21

Is our design robust?

� What if the counter starts in a 111
state?

001

100

111

Does our counter get

stuck in invalid states???

000

010

011

101

110

22

5-state counter

� Back-annotate our design to check it

000

010

011

101

110

Draw state diagramFill in state transition table

C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

Present State Next State 001

100

111

The proper methodology is to design
your counter to be self-starting

A+ = BC'

C+ = A

B+ = B' + A'C'

23

Self-starting counters

� Invalid states should always transition to
valid states
� Assures startup
� Assures bit-error tolerance

� Design your counters to be self-starting
� Draw all states in the state diagram
� Fill in the entire state-transition table
� May limit your ability to exploit don't cares

� Choose startup transitions that minimize the logic

