

- Group of storage elements read/written as a unit
- Store related values (e.g. a binary word)
- Collection of flip-flops with common control - Share clock, reset, set lines
- Example:
- Storage registers
- Shift registers
- Counters

- Basic storage registers use flip-flops
- Example: 4 bit storage register

Shift register applications

- Parallel-to-serial conversion for signal transmission

- Pattern recognition (circuit recognizes 1001)

[Finite-state machines (FSMs)

- States: Possible storage-element values
- Transitions: Changes in state - Clock synchronizes the state changes
- Sequential logic
- Sequences through a series of states
- Based on inputs and present state

Self-starting counters

- Invalid states should always transition to valid states
- Assures startup
- Assures bit-error tolerance
- Design your counters to be self-starting
- Draw all states in the state diagram
- Fill in the entire state-transition table
- May limit your ability to exploit don't cares
- Choose startup transitions that minimize the logic

