

Finite state machines

- FSM: A system that visits a finite number of logically distinct states
- Counters are simple FSMs
- Outputs and states are identical
- Visit states in a fixed sequence without inputs

- FSMs are typically more complex than counters
- Outputs can depend on current state and on inputs
- State sequencing depends on current state and on inputs
- FSM design procedure

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

- Counter design procedure

1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

[State diagrams

- Moore machine
- Each state is labeled by a statename/output pair.
- Mealy machine
- Each transition arc is labeled by a inputcondition/output pair.

- Moore: Output is a function of state only

Moore vs. Mealy

- Moore machines
+ Safer to use because outputs change at clock edge
- May take additional logic to decode state into outputs
- Mealy machines
+ Typically have fewer states
+ React faster to inputs - don't wait for clock
- Asynchronous outputs can be dangerous

- We often design synchronous Mealy machines
- Design a Mealy machine
- Then register the outputs

[Synchronous Mealy machines

- Registered state and registered outputs
- No glitches on outputs
- No race conditions between communicating machines

