
1

Lecture 22

� State encoding
� One-hot encoding

� Output encoding

� State partitioning

2

FSM design

� FSM design procedure
1. State diagram

2. State-transition table
3. State minimization

4. State encoding
5. Next-state logic minimization

6. Implement the design

3

Usual example

� 15 cents for a cup of coffee
� Doesn’t take pennies or quarters

� Doesn’t provide any change

Vending
Machine
FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

4

After state minimization

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

5

How many state encodings?

� Assume n state bits and m states
� 2n! / (2n – m)! possible encodings

� Example: 3 state bits, 4 states, 1680 possible state
assignments

� Which encoding is best?
� Want to pick state encoding strategy that results

in optimizing your criteria
� FSM size (amount of logic and number of FFs)
� FSM speed (depth of logic and fan-in/fan-out)
� FSM ease of design or debugging

6

State encoding strategies

� No guarantee of optimality
� An intractable problem

� Most common strategies
� Binary (sequential) – number states as in the state table
� Random – computer tries random encodings
� Heuristic – rules of thumb that seem to work well

� e.g. Gray-code – try to give adjacent states (states with an
arc between them) codes that differ in only one bit position

� One-hot – use as many state bits as there are states
� Output – use outputs to help encode states
� Hybrid – mix of a few different ones (e.g. One-hot +

heuristic)

7

One-hot encoding

� One-hot: Encode n states using n flip-
flops
� Assign a single “1” for each state

� Example: 0001, 0010, 0100, 1000

� Propagate a single “1” from one flip-flop
to the next
� All other flip-flop outputs are “0”

8

One-hot variants

� The inverse: One-cold encoding
� Assign a single “0” for each state

� Example: 1110, 1101, 1011, 0111

� Propagate a single “0” from one flip-flop
to the next
� All other flip-flop outputs are “1”

9

One-hot variants

� “almost one-hot” encoding (modified
one-hot encoding)
� Use no-hot (000…0) for the initial (reset

state)
� Assumes you never revisit the reset state

till reset again

10

One-hot encoding

� Often the best/convenient approach for
FPGAs
� FPGAs have many flip-flops

� Draw FSM directly from the state diagram
� + One product term per incoming arc

� - Complex state diagram ⇒ complex design
� - Many states ⇒ many flip flops

11

Vending machine

0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

1 1 – – – – –

0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

1 1 – – – – –

0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 – – – – –

1 0 0 0 – – 1 0 0 0 1

present state inputs next state output

Q3Q2Q1Q0 D N D3 D2D1D0 open

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

12

Designing from state diagram

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

13

Output encoding

� Reuse outputs as state bits
� Why create new functions when you can

use outputs?

� Bits from state assignments are the
outputs for that state
� Take outputs directly from the flip-flops

� Yields small circuits for most FSMs

14

Output encoding

Combinational

Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

15

FSM partitioning

� Break a large FSM into two or more
smaller FSMs
� Less states in each partition

� Simpler minimization and state assignment
� Smaller combinational logic
� Shorter critical path

� But more logic overall

16

Example

� Partition into two halves

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

17

Introduce idle states

� SA and SB handoff control between machines

C1

C2

C5•S2

S6

S4

S5SB

C1•S1

C3•S2+
C4•S3

(C1•S1+
C3•S2+
C4•S3+
C5•S2)’

C4

S1

S3

S2 SA

C2•S6

C3+C5

(C2•S6)’

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

18

Partitioning rules

S1 S6
C1

SAS1
C1

S1 S6
C2

SAS1
C2•S6

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state

19

Partitioning rules

S2

S3

S5

S4
C4 C5

C3
S2

S3

SA

C3+C5

C4

S5

S4C5•S2

SB

C3•S2 +
C4•S3

SAS1
C2•S6

C2•S6

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)
Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state
“OR exit conditions and invert”

20

Example

D

U
S0

S2

S1

S5

S3

S4

U

U

U

U

U

D

D
D

D

D

21

Example

� Count sequence S0, S1, S2, S3, S4, S5

� S2 goes to SA and holds, leaves after S5

� S5 goes to SB and holds, leaves after S2

� Down sequence is similar

D•S0

U

S5

S3

S4

U

UU•S2

D

DD

SB
(D•S0+
U•S2)’

D•S3

U

S0

S2

S1

U

U

U•S5

D

D

D
SA

(D•S3 +
U•S5)’

22

Example

D•S3

U

S0

S2

S1

U

U

U•S5

D

D

D
SA

(D•S3 +
U•S5)’

D•S0

U

S5

S3

S4

U

UU•S2

D

DD

SB
(D•S0+
U•S2)’

D

U
S0

S2

S1

S5

S3

S4

U

U

U

U

U

D

D
D

D

D

Compare behavior
on UUUUUU:

23

Example

� 4-state machines need 2 state bits each –
total 4 state bits
� Enough to represent 16 states, though the

combination of the two FSMs has only 6
different configurations

� Why do this?
� Each FSM may be much simpler to think about

(and design logic for) than the original FSM (not
here, though)

� Essential to do this partitioning for large FSMs

24

Minimize communication

� Ideal world: Two machines handoff
control
� Separate I/O, states, etc.

� Real world: Minimize handoffs and
common I/O
� Minimize number of state bits that cross

boundary

