

Two key concepts Duality (a meta-theorem— a theorem about theorems) All Boolean expressions have logical duals Any theorem that can be proved is also proved for its dual Replace: • with +, + with •, 0 with 1, and 1 with 0 Leave the variables unchanged de Morgan's Theorem Procedure for complementing Boolean functions Replace: • with +, + with •, 0 with 1, and 1 with 0 Replace all variables with their complements

CSE370, Lecture 3

Identity:	X + 0 = X	Dual: $X \bullet 1 = X$
Null:	X + 1 = 1	Dual: $X \bullet 0 = 0$
Idempotent:	X + X = X	Dual: $X \bullet X = X$
Involution:	(X')' = X	
Complementarit	y: $X + X' = 1$	Dual: $X \bullet X' = 0$
Commutative:	X + Y = Y + X	Dual: $X \bullet Y = Y \bullet X$
Associative:	(X+Y)+Z=X+(Y+Z)	Dual: (X•Y)•Z=X•(Y•Z)
Distributive:	X•(Y+Z)=(X•Y)+(X•Z	Z) Dual: X+(Y•Z)=(X+Y)•(X+Z)
Uniting:	X•Y+X•Y'=X	Dual: (X+Y)•(X+Y')=X

Absorption:	X+X•Y=X	Dual: X•(X+Y)=X
Absorption (#2):	(X+Y')•Y=X•Y	Dual: (X•Y')+Y=X+Y
de Morgan's:	(X+Y+)'=X'∙Y'∙	Dual: (X•Y•)'=X'+Y'+
Duality: ((X+Y+) ^D =X•Y∙	Dual: (X•Y•) ^D =X+Y+
Multiplying & fact	toring: (X+Y)•(X'+Z)=X•Z+X'•Y Dual: X•Y+X'•Z=(X+Z)•(X'+Y)
Consensus: (X	•Y)+(Y•Z)+(X'•Z)= X•	Y+X'∙Z

 Use de 	Morg	jan'	s Tł	neorem	to find co	mp	em	ents	
 Examp 	le: F=	=(A-	+B)	•(A'+C),	so F'=(A	′• B′)+(A∙C′)	
	A	в	с	F	А	в	с	F'	
	0		0	<u> </u>	0	0	0	1	
	0	0	1	0	0	0	1	1	
	0		0	1	0	1	-	0	
	0	_	1	1	0	_	- 1	0	
	1	•		-	1	•	-	-	
		0				0		-	
	_	1	-	-	-	1	-		
	1	1	1	1	1	1	1	0	

