Lecture 5

- Logistics

HW1 due today

- HW2 available today, due Wed $1 / 21$

Office Hours this week:
\Rightarrow Me: Friday 10:00-11:00 CSE 668
\Leftrightarrow TA (Josh): Friday 3:30 CSE 002/3

- Last lecture
- Logic gates and truth tables

Implementing logic functions
Canonical forms

- Today's lecture
- Converting to use NAND and NOR
- Minimizing functions using Boolean cubes

CSE370, Lecture 5

The "WHY" slide

- Converting to use NAND and NOR
- NAND and NOR are more efficient gates than AND or OR (and therefore more common). Your computer is built almost exclusively on NAND and NOR gates. It is good to knowhow to convert any logic circuits to a NAND/NOR circuit.
- Pushing bubbles
- It is always good to remember logical/theoretical concepts visually. This is one way to remember the NAND/NOR conversion and De Morgan's laws easily.
- Logic Simplification
- If you are building a computer or a cool gadget, you want to optimize on size and efficiency. Having extra unnecessary operations/gates is not great. We teach nice techniques to allow logic simplifications.
CSE370, Lecture 5

NAND/NOR more common/efficient

- CMOS logic gates are more common and efficient in the inverted forms
- NAND, NOR, NOT
- Even though Canonical forms discussed so far used AND/OR, NAND/NOR preferred for real hardware mplementation

CSE370, Lecture 5

NAND and NOR (truth table)
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
NOR is equivalent to AND
with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(X+Y)^{\prime} X^{\prime} \bullet Y^{\prime}$	
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

$(X \bullet Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR
with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(\mathrm{X} \bullet \mathrm{Y})^{\prime}$	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

CSE370, Lecture 5 5

CMOS NAND and NOR Gates

Converting to use NAND/NOR (con't)

- Example: AND/OR network to NOR/NOR

$$
\begin{aligned}
Z & =A B+C D \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime \prime} \\
& =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime}
\end{aligned}
$$

CSE370, Lecture 5
8

Converting to use NAND/NOR (con't)

- Example: AND/OR network to NOR/NOR

$$
\begin{aligned}
Z & =A B+C D \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)\right]^{\prime \prime} \\
& =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime}
\end{aligned}
$$

CSE370, Lecture 5
9

Converting to use NAND/NOR (con't)

- Example: OR/AND to NAND/NAND

Converting to use NAND/NOR(con't)

- Example: OR/AND to NOR/NOR

Goal: Minimize two-level logic expression

- Algebraic simplification - not an systematic procedure

■ hard to know when we reached the minimum

- Just program it!! Computer-aided design tools - require very long computation times (NP hard)
- heuristic methods employed - "educated guesses"
- Visualization methods are useful
- our brain is good at figuring simple things out - many real-world problems are solvable by hand

Key tool: The Uniting Theorem

- The uniting theorem $\rightarrow A\left(B^{\prime}+B\right)=A$
- The approach:
- Find some variables don't change (the A's above) and others do (the B's above)
- Eliminate the changing variables (the $\mathrm{B}^{\prime} \mathrm{s}$)

A	B	F	
0	0	1	A has the same value in both "on-set" rows
0	1	1	\Rightarrow keep A
1	0	0	
1	1	0	B has a different value in the two rows
	\Rightarrow eliminate B		

Boolean cubes

- Visualization tool for the uniting theorem
- n input variables $=n$-dimensional "cube"

CSE370, Lecture 5

