
1CSE370, Lecture 5

Lecture 5

◆ Logistics
■ HW1 due today

■ HW2 available today, due Wed 1/21

■ Office Hours this week:
� Me: Friday 10:00-11:00 CSE 668

� TA (Josh): Friday 3:30 CSE 002/3

◆ Last lecture
■ Logic gates and truth tables

■ Implementing logic functions

■ Canonical forms

◆ Today’s lecture
■ Converting to use NAND and NOR

■ Minimizing functions using Boolean cubes

2CSE370, Lecture 5

The “WHY” slide

◆ Converting to use NAND and NOR
■ NAND and NOR are more efficient gates than AND or OR (and

therefore more common). Your computer is built almost exclusively

on NAND and NOR gates. It is good to knowhow to convert any

logic circuits to a NAND/NOR circuit.

◆ Pushing bubbles
■ It is always good to remember logical/theoretical concepts

visually. This is one way to remember the NAND/NOR

conversion and De Morgan’s laws easily.

◆ Logic Simplification
■ If you are building a computer or a cool gadget, you want to

optimize on size and efficiency. Having extra unnecessary

operations/gates is not great. We teach nice techniques to allow

logic simplifications.

3CSE370, Lecture 5

NAND/NOR more common/efficient

◆ CMOS logic gates are more common and efficient
in the inverted forms

■ NAND, NOR, NOT

■ Even though Canonical forms discussed so far used

AND/OR, NAND/NOR preferred for real hardware

implementation

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X
Y Z

X
Y Z

4CSE370, Lecture 5

CMOS NAND and NOR Gates

NAND

NOR

5CSE370, Lecture 5

(X + Y)' = X' • Y'
NOR is equivalent to AND
with inputs complemented

(X • Y)' = X' + Y'
NAND is equivalent to OR
with inputs complemented

X Y X' Y' (X + Y)' X' • Y'
0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 0

X Y X' Y' (X • Y)' X' + Y'
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 0 0

NAND and NOR (truth table)

6CSE370, Lecture 5

NAND and NOR (logic gates)

◆ de Morgan's
■ Standard form: A'B' = (A + B)' A' + B' = (AB)'

■ Inverted: A + B = (A'B')' (AB) = (A' + B')'

■ AND with complemented inputs ≡ NOR

■ OR with complemented inputs ≡ NAND

■ OR ≡ NAND with complemented inputs

■ AND ≡ NOR with complemented inputs

NAND

OR AND

NOR

pushing
the
bubble

NAND

OR AND

NOR

7CSE370, Lecture 5

Converting to use NAND/NOR

◆ Introduce inversions ("bubbles")
■ Introduce bubbles in pairs

� Conserve inversions

� Do not alter logic function

◆ Example
■ AND/OR to NAND/NAND

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Z = AB + CD

= (A'+B')'+(C'+D')'

= [(A'+B')(C'+D')]'

= [(AB)'(CD)']'

8CSE370, Lecture 5

Converting to use NAND/NOR (con’t)

◆ Example: AND/OR network to NOR/NOR

Z = AB+CD

= (A'+B')'+(C'+D')’

= [(A'+B')'+(C'+D')’]’’

= {[(A'+B')'+(C'+D')']'}'

A

B

C

D

Z

A’

B’

C’

D’

Z
NOR

NOR

NOR

9CSE370, Lecture 5

Converting to use NAND/NOR (con’t)

◆ Example: AND/OR network to NOR/NOR

Z = AB+CD

= (A'+B')'+(C'+D')’

= [(A'+B')'+(C'+D')’]’’

= {[(A'+B')'+(C'+D')']'}'

A

B

C

D

Z

A

B

C

D

Z
NOR

NOR

NOR

10CSE370, Lecture 5

Converting to use NAND/NOR (con’t)

◆ Example: OR/AND to NAND/NAND

A

B

C

D

Z Z

A’

B’

C’

D’

NAND

NAND

NAND

11CSE370, Lecture 5

Converting to use NAND/NOR (con’t)

◆ Example: OR/AND to NAND/NAND

A

B

C

D

Z Z

A

B

C

D

NAND

NAND

NAND

12CSE370, Lecture 5

Converting to use NAND/NOR(con’t)

◆ Example: OR/AND to NOR/NOR

A

B

C

D

Z Z

A

B

C

D

NOR

NOR

NOR

13CSE370, Lecture 5

Example of bubble pushing: before pushing

14CSE370, Lecture 5

Example of bubble pushing: NAND/NAND

‘

15CSE370, Lecture 5

Example of bubble pushing: NOR/NOR

‘

16CSE370, Lecture 5

Goal: Minimize two-level logic expression

◆ Algebraic simplification

■ not an systematic procedure

■ hard to know when we reached the minimum

◆ Just program it!! Computer-aided design tools

■ require very long computation times (NP hard)

■ heuristic methods employed – "educated guesses”

◆ Visualization methods are useful

■ our brain is good at figuring simple things out

■ many real-world problems are solvable by hand

17CSE370, Lecture 5

Key tool: The Uniting Theorem

◆ The uniting theorem → A(B’+B) = A

◆ The approach:
■ Find some variables don’t change (the A’s above) and others

do (the B’s above)

■ Eliminate the changing variables (the B’s)

A B F

0 0 1

0 1 1

1 0 0

1 1 0

A has the same value in both “on-set” rows
⇒ keep A

B has a different value in the two rows
⇒ eliminate B

F = A'B'+A'B = A'(B+B') = A'

18CSE370, Lecture 5

Boolean cubes

◆ Visualization tool for the uniting theorem
■ n input variables = n-dimensional "cube"

1-cube 2-cube

3-cube
4-cube

X

X

Y

X

Y Z W

X

Y Z

0 1
11

00

01

10

000

111

0000

1111

1000

0111

101

100

011

0100

0010

0011

1100

1011

19CSE370, Lecture 5

Mapping truth tables onto Boolean cubes

◆ ON set = solid nodes

◆ OFF set = empty nodes

A

B

00

01

F
11

10

Look for on-set adjacent
to each other

Sub-cube (a line) comprises
two nodes

A varies within the sub-cube;
B does not

This sub-cube represents B'

A B F

0 0 1

0 1 0

1 0 1

1 1 0

20CSE370, Lecture 5

Example using Boolean cube

◆ Binary full-adder carry-out logic

■ On-set is covered by the OR of three 1-subcubes

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

111

A

B
Cin

000

101

Cout = BCin+AB+ACin

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

21CSE370, Lecture 5

Another example using Boolean cube

Changed one bit from the previous function

■ On-set is covered by the OR of one 2-D subcubes and

one 3-D subcubes

A B Cin D
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

111

A

B
Cin

000

101

D = BCin+A

(A'+A)BCin

A(B+B')(Cin+Cin‘)

1

22CSE370, Lecture 5

M-dimensional cubes in n-dimensional space

◆ In a 3-cube (three variables):
■ A 0-cube (a single node) yields a term in 3 literals

■ A 1-cube (a line of two nodes) yields a term in 2 literals

■ A 2-cube (a plane of four nodes) yields a term in 1 literal

■ A 3-cube (a cube of eight nodes) yields a constant term "1"

F(A,B,C) = ∑m(4,5,6,7)

On-set forms a square (a 2-D cube)

A is asserted (true) and unchanging
B and C vary

This sub-cube represents the literal A

A

B C

000

111

101

100

011

010
110

