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Lecture 10

� Logistics
� HW3 due now 

� Solutions will be available at the midterm review session tomorrow (and at 
the end of class today)

� HW4 handed out today 
� Due next week

� Midterm 1 Friday in class.  Closed book.  Closed notes.  No calculators.
� Sample midterm on the web
� Review session, Thursday 4:30 here (EEB 037)

� Bring your questions!

� Last lecture
� Demultiplexers
� PLDs

� PLAs
� PALs

� Today
� PLDs

� ROMs
� Multilevel Logic
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Midterm 1 Topics Covered

◆ Combinational logic basics
■ Binary/hex/decimal numbers

■ Ones and twos complement arithmetic

■ Truth tables

■ Boolean algebra

■ Basic logic gates

■ Schematic diagrams

■ de Morgan's theorem

■ AND/OR to NAND/NOR logic conversion

■ K-maps (up to 4 variables), logic minimization, don't cares

■ SOP, POS

■ Minterm and maxterm expansions (canonical, minimized)
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Midterm 1 Topics Covered (continued)

◆ Combinational logic applications
■ Combinational design

� Input/output encoding

� Truth table

� K-map

� Boolean equations

� Schematics

■ Multiplexers

4CSE370, Lecture 10

Recall example: BCD to Gray --- Wiring of a PLA

A B C D

W X Y Z

Minimized functions:

W = A + BC + BD

X  = BC'

Y  = B + C

Z  = A'B'C'D + BCD 

+ AD' + B'CD'
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Recall: Wiring a PAL

Minimized functions:

W = A + BC + BD

X  = BC'

Y  = B + C

Z  = A'B'C'D + BCD 

+ AD' + B'CD’

Fine example for the use of PAL

(because no shared AND terms)

Many AND gates wasted, but

still faster and cheaper than PLA
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Compare implementations for this example

� PLA:
� No shared logic terms in this example

� 10 decoded functions (10 AND gates)

� PAL:
� Z requires 4 product terms

� 16 decoded functions (16 AND gates)

� 6 unused AND gates

� This decoder is a good candidate for PALs
� 10 of 16 possible inputs are decoded

� No sharing among AND terms

� Another option? 
� Yes — a ROM
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Read-only memories (ROMs)

� Two dimensional array of stored 1s and 0s
� Input is an address ⇒ ROM decodes all possible input addresses

� Stored row entry is called a "word" 

� ROM output is the decoded word

inputs

outputs

n address lines

2n word

lines
decoder

• • •

• • •

memory

array

(2n words

by m bits)
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A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

Think of as a memory-address decoder

Memory bits

Like this special PLA example: only more efficient

F1 = ABC

F2 = A + B + C

F3 = A' B' C'

F4 = A' + B' + C'

F5 = A xor B xor C

F6 = A xnor B xnor C

0   1   0

0   1 0    1    1
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ROM details

� Similar to a PLA but with a fully decoded and fixed AND 
array

� Completely flexible OR array (unlike a PAL)
� Extremely dense: One transistor per stored bit

decoder

n-1          0

Address

2
n-1

0

+5V

Bit lines: Normally pulled high through 
resistor. If transistor stores a zero, then
line pulls low when row is selected

1

2

Only one word line
is active at any time

m-1 0

Outputs
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A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

ROM
8 words x 4 bits/word

address outputs

A B C F0 F1 F2 F3

Two-level combinational logic using a ROM

� Use a ROM to directly store a truth table
� No need to minimize logic

� Example: F0 = A'B'C + AB'C' + AB'C

� F1 = A'B'C + A'BC' + ABC

� F2 = A'B'C' + A'B'C + AB'C'

� F3 = A'BC + AB'C' + ABC'

You specify whether 
to store 1 or 0 in each 
location in the ROM
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ROMs versus PLAs/PALs

� ROMs
� Benefits

� Quick to design, simple, dense

� Limitations 
� Size doubles for each additional input

� Can't exploit don't cares

� PLAs/PALs
� Benefits

� Logic minimization reduces size

� PALs faster/cheaper than PLAs

� Limitations
� PAL OR-plane has hard-wired fan-in

� Another alternative: Field programmable gate arrays
� Learn a bit more later in this course
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BCD to 7–segment
control-signal

decoder

c0  c1  c2  c3  c4  c5  c6

A   B   C   D

c1c5

c2c4
c6

c0

c3

Example: BCD to 7-segment display controller

� The problem
� Input is a 4-bit BCD digit (A, B, C, D)

� Need signals to drive a display (7 outputs C0 – C6)
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A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 X X X X X X X X

1 1 X X X X X X X X X

Formalize the problem

� Truth table
� Many don’t cares

� Choose implementation 
target
� If ROM, we are done

� Don't cares imply PAL/PLA 

may be good choice

� Implement design
� Minimize the logic

� Map into PAL/PLA

Not all rows of the truth table are listed separately
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C0 = A + B D + C + B' D'

C1 = C' D' + C D + B'

C2 = B + C' + D

C3 = B' D' + C D' + B C' D + B' C

C4 = B' D' + C D'

C5 = A + C' D' + B D' + B C'

C6 = A + C D' + B C' + B' C

1    0    X    1

0    1    X    1 

1    1    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    0    X    1 

1    1    X    X

1    0    X    X 

D

A

B

C

0    1    X    1

0    1    X    1 

1    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    0    X    1

0    1    X    0 

1    0    X    X

1    1    X    X 

D

A

B

C

1    0    X    1

0    0    X    0 

0    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

0    1    X    1 

0    0    X    X

0    1    X    X 

D

A

B

C

Sum-of-products implementation

� 15 unique product terms if we minimize individually

4 input, 7 output           PLA: 15 AND gates

PAL: 4 product terms per output (28 AND gates)
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C0 = BC'D + CD + B'D' + BCD' + A
C1 = B'D + C'D' + CD + B'D'
C2 = B'D + BC'D + C'D' + CD + BCD'
C3 = BC'D + B'D + B'D' + BCD'
C4 = B'D' + BCD'
C5 = BC'D + C'D' + A + BCD'
C6 = B'C + BC' + BCD' + A

C0 = A + BD + C + B'D'
C1 = C'D' + CD + B'
C2 = B + C' + D
C3 = B'D' + CD' + BC'D + B'C
C4 = B'D' + CD'
C5 = A + C'D' + BD' + BC'
C6 = A + CD' + BC' + B'C

C2
1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

C2

If choosing PLA: better SOP implementation

� Can do better than 15 product terms
� Share terms among outputs ⇒ only 9 unique product terms

� Each term not necessarily minimized
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BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0  C1  C2  C3  C4  C5  C6  C7

PLA implementation

C0 = BC'D + CD + B'D' + BCD' + A

C1 = B'D + C'D' + CD + B'D'

C2 = B'D + BC'D + C'D' + CD + BCD'

C3 = BC'D + B'D + B'D' + BCD'

C4 = B'D' + BCD'

C5 = BC'D + C'D' + A + BCD'

C6 = B'C + BC' + BCD' + A
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Multilevel logic

◆ Basic idea: Simplify logic using >2 gate levels
■ Time–space (speed versus gate count) tradeoff

� Will talk about the speed issue with timing diagram 

◆ Two-level logic usually
■ Has smaller delays (faster circuits)

■ more gates and more wires (more circuit area)

◆ Multilevel logic usually
■ Has fewer gates (smaller circuits)

■ more gate delays (slower circuits)
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Multilevel logic example

◆ Function X
■ SOP:  X = ADF + AEF + BDF + BEF + CDF + CEF + G

� X is minimized!

� Six 3-input ANDs; one 7-input OR; 26 wires

■ Multilevel:  X = (A+B+C)(D+E)F + G
� Factored form

� One 3-input OR, two 2-input OR's, one 3-input AND; 11 wires

A
B
C

D
E

F
G

X

3-level circuit

X = (A+B+C)(D+E)F + G

13
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Multilevel NAND/NAND conversion

F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C
D

B

B
C'

F
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Multilevel NOR/NOR conversion

F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C

D

B

B

C'

F
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Generic multilevel conversion

F = ABC + BC + D = AX + X + D 

D'

A

X'

B
C

F

D'

A

X

B
C

F

X'

(a)

(c)

(b)

(d)

A

X

B
C

D

F

original circuit

A

X

B
C

D

F

add double bubbles at inputs

distribute bubbles
some mismatches insert inverters to fix mismatches
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Issues with multilevel design

◆ No global definition of “optimal” multilevel circuit
■ Optimality depends on user-defined goals

◆ Synthesis requires CAD-tool help
■ No simple hand methods like K-maps

■ CAD tools manipulate Boolean expressions

■ Covered in more detail in CSE467
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Multilevel logic summary

◆ Advantages over 2-level logic
■ Smaller circuits

■ Reduced fan-in

■ Less wires

◆ Disadvantages w.r.t 2-level logic
■ More difficult design

■ Less powerful optimizing tools

◆ What you should know for CSE370
■ The basic multilevel idea

■ Multilevel NAND/NAND and NOR/NOR conversion
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