
1CSE370, Lecture 10

Lecture 10

� Logistics
� HW3 due now

� Solutions will be available at the midterm review session tomorrow (and at
the end of class today)

� HW4 handed out today
� Due next week

� Midterm 1 Friday in class. Closed book. Closed notes. No calculators.
� Sample midterm on the web
� Review session, Thursday 4:30 here (EEB 037)

� Bring your questions!

� Last lecture
� Demultiplexers
� PLDs

� PLAs
� PALs

� Today
� PLDs

� ROMs
� Multilevel Logic

2CSE370, Lecture 10

Midterm 1 Topics Covered

◆ Combinational logic basics
■ Binary/hex/decimal numbers

■ Ones and twos complement arithmetic

■ Truth tables

■ Boolean algebra

■ Basic logic gates

■ Schematic diagrams

■ de Morgan's theorem

■ AND/OR to NAND/NOR logic conversion

■ K-maps (up to 4 variables), logic minimization, don't cares

■ SOP, POS

■ Minterm and maxterm expansions (canonical, minimized)

3CSE370, Lecture 10

Midterm 1 Topics Covered (continued)

◆ Combinational logic applications
■ Combinational design

� Input/output encoding

� Truth table

� K-map

� Boolean equations

� Schematics

■ Multiplexers

4CSE370, Lecture 10

Recall example: BCD to Gray --- Wiring of a PLA

A B C D

W X Y Z

Minimized functions:

W = A + BC + BD

X = BC'

Y = B + C

Z = A'B'C'D + BCD

+ AD' + B'CD'

5CSE370, Lecture 10

Recall: Wiring a PAL

Minimized functions:

W = A + BC + BD

X = BC'

Y = B + C

Z = A'B'C'D + BCD

+ AD' + B'CD’

Fine example for the use of PAL

(because no shared AND terms)

Many AND gates wasted, but

still faster and cheaper than PLA

6CSE370, Lecture 10

Compare implementations for this example

� PLA:
� No shared logic terms in this example

� 10 decoded functions (10 AND gates)

� PAL:
� Z requires 4 product terms

� 16 decoded functions (16 AND gates)

� 6 unused AND gates

� This decoder is a good candidate for PALs
� 10 of 16 possible inputs are decoded

� No sharing among AND terms

� Another option?
� Yes — a ROM

7CSE370, Lecture 10

Read-only memories (ROMs)

� Two dimensional array of stored 1s and 0s
� Input is an address ⇒ ROM decodes all possible input addresses

� Stored row entry is called a "word"

� ROM output is the decoded word

inputs

outputs

n address lines

2n word

lines
decoder

• • •

• • •

memory

array

(2n words

by m bits)

8CSE370, Lecture 10

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

Think of as a memory-address decoder

Memory bits

Like this special PLA example: only more efficient

F1 = ABC

F2 = A + B + C

F3 = A' B' C'

F4 = A' + B' + C'

F5 = A xor B xor C

F6 = A xnor B xnor C

0 1 0

0 1 0 1 1

9CSE370, Lecture 10

ROM details

� Similar to a PLA but with a fully decoded and fixed AND
array

� Completely flexible OR array (unlike a PAL)
� Extremely dense: One transistor per stored bit

decoder

n-1 0

Address

2
n-1

0

+5V

Bit lines: Normally pulled high through
resistor. If transistor stores a zero, then
line pulls low when row is selected

1

2

Only one word line
is active at any time

m-1 0

Outputs

10CSE370, Lecture 10

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

ROM
8 words x 4 bits/word

address outputs

A B C F0 F1 F2 F3

Two-level combinational logic using a ROM

� Use a ROM to directly store a truth table
� No need to minimize logic

� Example: F0 = A'B'C + AB'C' + AB'C

� F1 = A'B'C + A'BC' + ABC

� F2 = A'B'C' + A'B'C + AB'C'

� F3 = A'BC + AB'C' + ABC'

You specify whether
to store 1 or 0 in each
location in the ROM

11CSE370, Lecture 10

ROMs versus PLAs/PALs

� ROMs
� Benefits

� Quick to design, simple, dense

� Limitations
� Size doubles for each additional input

� Can't exploit don't cares

� PLAs/PALs
� Benefits

� Logic minimization reduces size

� PALs faster/cheaper than PLAs

� Limitations
� PAL OR-plane has hard-wired fan-in

� Another alternative: Field programmable gate arrays
� Learn a bit more later in this course

12CSE370, Lecture 10

BCD to 7–segment
control-signal

decoder

c0 c1 c2 c3 c4 c5 c6

A B C D

c1c5

c2c4
c6

c0

c3

Example: BCD to 7-segment display controller

� The problem
� Input is a 4-bit BCD digit (A, B, C, D)

� Need signals to drive a display (7 outputs C0 – C6)

13CSE370, Lecture 10

A B C D C0 C1 C2 C3 C4 C5 C6

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 X X X X X X X X

1 1 X X X X X X X X X

Formalize the problem

� Truth table
� Many don’t cares

� Choose implementation
target
� If ROM, we are done

� Don't cares imply PAL/PLA

may be good choice

� Implement design
� Minimize the logic

� Map into PAL/PLA

Not all rows of the truth table are listed separately

14CSE370, Lecture 10

C0 = A + B D + C + B' D'

C1 = C' D' + C D + B'

C2 = B + C' + D

C3 = B' D' + C D' + B C' D + B' C

C4 = B' D' + C D'

C5 = A + C' D' + B D' + B C'

C6 = A + C D' + B C' + B' C

1 0 X 1

0 1 X 1

1 1 X X

1 1 X X

D

A

B

C

1 1 X 1

1 0 X 1

1 1 X X

1 0 X X

D

A

B

C

0 1 X 1

0 1 X 1

1 0 X X

1 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 0 X 1

0 1 X 0

1 0 X X

1 1 X X

D

A

B

C

1 0 X 1

0 0 X 0

0 0 X X

1 1 X X

D

A

B

C

1 1 X 1

0 1 X 1

0 0 X X

0 1 X X

D

A

B

C

Sum-of-products implementation

� 15 unique product terms if we minimize individually

4 input, 7 output PLA: 15 AND gates

PAL: 4 product terms per output (28 AND gates)

15CSE370, Lecture 10

C0 = BC'D + CD + B'D' + BCD' + A
C1 = B'D + C'D' + CD + B'D'
C2 = B'D + BC'D + C'D' + CD + BCD'
C3 = BC'D + B'D + B'D' + BCD'
C4 = B'D' + BCD'
C5 = BC'D + C'D' + A + BCD'
C6 = B'C + BC' + BCD' + A

C0 = A + BD + C + B'D'
C1 = C'D' + CD + B'
C2 = B + C' + D
C3 = B'D' + CD' + BC'D + B'C
C4 = B'D' + CD'
C5 = A + C'D' + BD' + BC'
C6 = A + CD' + BC' + B'C

C2
1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

If choosing PLA: better SOP implementation

� Can do better than 15 product terms
� Share terms among outputs ⇒ only 9 unique product terms

� Each term not necessarily minimized

16CSE370, Lecture 10

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0 C1 C2 C3 C4 C5 C6 C7

PLA implementation

C0 = BC'D + CD + B'D' + BCD' + A

C1 = B'D + C'D' + CD + B'D'

C2 = B'D + BC'D + C'D' + CD + BCD'

C3 = BC'D + B'D + B'D' + BCD'

C4 = B'D' + BCD'

C5 = BC'D + C'D' + A + BCD'

C6 = B'C + BC' + BCD' + A

17CSE370, Lecture 10

Multilevel logic

◆ Basic idea: Simplify logic using >2 gate levels
■ Time–space (speed versus gate count) tradeoff

� Will talk about the speed issue with timing diagram

◆ Two-level logic usually
■ Has smaller delays (faster circuits)

■ more gates and more wires (more circuit area)

◆ Multilevel logic usually
■ Has fewer gates (smaller circuits)

■ more gate delays (slower circuits)

13 18CSE370, Lecture 10

Multilevel logic example

◆ Function X
■ SOP: X = ADF + AEF + BDF + BEF + CDF + CEF + G

� X is minimized!

� Six 3-input ANDs; one 7-input OR; 26 wires

■ Multilevel: X = (A+B+C)(D+E)F + G
� Factored form

� One 3-input OR, two 2-input OR's, one 3-input AND; 11 wires

A
B
C

D
E

F
G

X

3-level circuit

X = (A+B+C)(D+E)F + G

13

19CSE370, Lecture 10

Multilevel NAND/NAND conversion

F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C
D

B

B
C'

F

13 20CSE370, Lecture 10

Multilevel NOR/NOR conversion

F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C

D

B

B

C'

F

13

21CSE370, Lecture 10

Generic multilevel conversion

F = ABC + BC + D = AX + X + D

D'

A

X'

B
C

F

D'

A

X

B
C

F

X'

(a)

(c)

(b)

(d)

A

X

B
C

D

F

original circuit

A

X

B
C

D

F

add double bubbles at inputs

distribute bubbles
some mismatches insert inverters to fix mismatches

13 22CSE370, Lecture 10

Issues with multilevel design

◆ No global definition of “optimal” multilevel circuit
■ Optimality depends on user-defined goals

◆ Synthesis requires CAD-tool help
■ No simple hand methods like K-maps

■ CAD tools manipulate Boolean expressions

■ Covered in more detail in CSE467

13

23CSE370, Lecture 10

Multilevel logic summary

◆ Advantages over 2-level logic
■ Smaller circuits

■ Reduced fan-in

■ Less wires

◆ Disadvantages w.r.t 2-level logic
■ More difficult design

■ Less powerful optimizing tools

◆ What you should know for CSE370
■ The basic multilevel idea

■ Multilevel NAND/NAND and NOR/NOR conversion

13

