Lecture 10

Logistics

- HW3 due now
- Solutions will be available at the midterm review session tomorrow (and at
- HW4 handed out today
- Due next week

Midterm 1 Friday in class. Closed book. Closed notes. No calculators. - Sample midterm on the web

- Review session, Thursday 4:30 here (EEB 037) - Bring your questions!
- Last lecture
: Demultiplexers
PLDs
- PLAs
- Today
- PLDs
- Multilevel Logic

CSE370, Lecture 10

Midterm 1 Topics Covered

- Combinational logic basics
- Binary/hex/decimal numbers
- Ones and twos complement arithmetic
- Truth tables
- Boolean algebra
- Basic logic gates
- Schematic diagrams
- de Morgan's theorem
- AND/OR to NAND/NOR logic conversion
- K-maps (up to 4 variables), logic minimization, don't cares
- SOP, POS
- Minterm and maxterm expansions (canonical, minimized)

Recall example: BCD to Gray --- Wiring of a PLA

Minimized functions:
$W=A+B C+B D$
$X=B C^{\prime}$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D$
$+A D^{\prime}+B^{\prime} C D^{\prime}$
\Rightarrow Boolean equations
\Rightarrow Schematics

- Multiplexers

Compare implementations for this example

- PLA:
- No shared logic terms in this example
- 10 decoded functions (10 AND gates)
- PAL:
- Z requires 4 product terms
- 16 decoded functions (16 AND gates)
- 6 unused AND gates
- This decoder is a good candidate for PALs
- 10 of 16 possible inputs are decoded
- No sharing among AND terms
- Another option?
- Yes - a ROM

CSE370, Lecture 10

Read-only memories (ROMs)

- Two dimensional array of stored 1 s and 0 s
- Input is an address \Rightarrow ROM decodes all possible input addresses
- Stored row entry is called a "word"
- ROM output is the decoded word

CSE370, Lecture 10

Like this special PLA example: only more efficient
$\mathrm{F} 1=\mathrm{ABC}$

CSE370, Lecture 10
8

ROM details

- Similar to a PLA but with a fully decoded and fixed AND
array
- Completely flexible OR array (unlike a PAL)
- Extremely dense: One transistor per stored bit

CSE370, Lecture 10 9

Two-level combinational logic using a ROM

- Use a ROM to directly store a truth table
- No need to minimize logic
- Example: $\quad F 0=A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C$ $F 1=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B C$ $F 2=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}$
$F 3=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime}$

CSE370, Lecture 10
10

ROMs versus PLAs/PALs

- ROMs
- Benefits
- Quick to design, simple, dense

Limitations

- Size doubles for each additional input
- Can't exploit don't cares
- PLAs/PALs
- Benefits
- Logic minimization reduces size
- PALs faster/cheaper than PLAs
- Limitations
- PAL OR-plane has hard-wired fan-in
- Another alternative: Field programmable gate arrays Learn a bit more later in this course
CSE370, Lecture 10 ${ }^{11}$

Example: BCD to 7-segment display controller

- The problem
- Input is a 4-bit BCD digit (A, B, C, D)
- Need signals to drive a display (7 outputs C0 - C6)

昭昭
56888

Formalize the problem

- Truth table
- Many don't cares
- Choose implementation target
- If ROM, we are done
- Don't cares imply PAL/PLA may be good choice

Implement design

- Minimize the logic
- Map into PAL/PLA

Not all rows of the truth table are listed separately
CSE370, Lecture 10 13

Sum-of-products implementation

- 15 unique product terms if we minimize individually

Multilevel logic example

- Function X
- SOP: $X=A D F+A E F+B D F+B E F+C D F+C E F+G$ $\diamond X$ is minimized!
\Rightarrow Six 3-input ANDs; one 7-input OR; 26 wires
- Multilevel: $X=(A+B+C)(D+E) F+G$
\Rightarrow Factored form
\Rightarrow One 3-input OR, two 2-input OR's, one 3-input AND; 11 wires
3-level circuit

CSE370, Lecture 13

Generic multilevel conversion
$F=A B C+B C+D=A X+X+D$
(a)

(b)

(c)

distribute bubbles some mismatches
(d)

insert inverters to fix mismatches
CSE370, Lecture 13
${ }^{21}$

Multilevel logic summary

- Advantages over 2-level logic
- Smaller circuits
- Reduced fan-in
- Less wires
- Disadvantages w.r.t 2-level logic
- More difficult design
- Less powerful optimizing tools
- What you should know for CSE370
- The basic multilevel idea
- Multilevel NAND/NAND and NOR/NOR conversion

