Lecture 18

- Logistics
- HW6 due today
- Midterm 2
\Rightarrow Wednesday Feb 25
\Rightarrow Review session Tuesday Feb 24, 4:30 in this room, EEB 037
\Rightarrow Will cover materials up to today's lecture
- Last Lecture
- Counter Finite State Machine
- Timing
- Today
- General Finite State Machine (FSM) design

CSE370, Lecture 18

One more counter example:
A 5-state counter with D flip flops

- Counter repeats 5 states in sequence
- Sequence is $000,010,011,101,110,000$

Step 2: State transition table Assume D flip-flops					
Present State			Next State		
C	B	A		B+	
0	0	0	0	1	0
0	0	1	X	X	X
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	X	X	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	X	X	X

CSE370, Lecture 18 2

Self-starting counters

- Invalid states should always transition to valid states
- Assures startup
- Assures bit-error tolerance
- Design your counters to be self-starting

Draw all states in the state diagram

- Fill in the entire state-transition table
- May limit your ability to exploit don't cares \Rightarrow Choose startup transitions that minimize the logic

FSM design

- Counter design procedure

1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

- FSM design procedure

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next--state logic minimization
6. Implement the design

A vending machine:
(conceptual) state diagram

Finite state machines: more than counters

- FSM: A system that visits a finite number of logically distinct states
- Counters are simple FSMs
- Outputs and states are identical
- Visit states in a fixed sequence without inputs
- FSMs are typically more complex than counters
- Outputs can depend on current state and on inputs
- State sequencing depends on current state and on inputs ,

A vending machine: State transition table

12

N'D ${ }^{\prime}$ Reset	present state	$\begin{gathered} \text { inputs } \\ \mathrm{D} \end{gathered}$	next state	output open
	0¢	00	$0 ¢$	0
		01	$5 ¢$	0
0\$		10	10¢	0
$\mathrm{N}^{\prime} \mathrm{D}^{\prime} \mathrm{TN}$		$1 \begin{array}{ll}1 \\ 0\end{array}$	5	-
N'0 ${ }^{\text {N }}$	$5 ¢$	0	5 ¢	0
5		01	$10 ¢$	0
(5\$		110	15¢	0
NDO^{\prime}			-	-
NDIN	10\$	$\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}$	$10 ¢$	0
$D 104$.		10	15¢	0
(104)		11	-	-
$N+D$	15\$	- -	15\$	1
$15 ¢$	symbolic state table			
CSE370, Lecture 18				

A vending machine: State encoding

A vending machine: State encoding					
	present sta 0100	$\begin{gathered} \text { inputs } \\ D_{N} \end{gathered}$	next state D1 D0	output open	
	00	00	00	0	
		011	$\begin{array}{ll}0 & 1 \\ 1\end{array}$	0	
		$1{ }^{1} 0$	10	0	
	01	00	01	0	
		01	10	0	
		10	11	0	
		$1{ }^{1} 1$	- -	-	
		$\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}$	$\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}$	0	
		10	$1 \begin{array}{ll}1 \\ 1\end{array}$	0	
		11	- -	-	
	11	- -	11	1	
CSE370, Lecture 18					14

