Lecture 19

- Logistics
- Lab 8 this week to be done in pairs
\Rightarrow Find a partner before your lab period
\Rightarrow Otherwise you will have to wait for a pairing which will slow you down
- HW5 and HW6 solutions out today
- HW7 out today due Wednesday March 4
- Midterm 2 Wednesday
\Rightarrow Covers material up to simple FSM
- Last lecture
- Counter FSM design
- General Finite State Machine Design
\Rightarrow Vending machine example
- Today
- Moore/Mealy machines

Midterm 2 topics and logistics

CSE370, Lecture 19

The "WHY" slide

- Moore/Mealy machines
- There are two different ways to express the FSMs with respect to the output. Both have different advantages so it is good to know them.

State Diagrams

- Moore machine
- Each state is labeled by a pair:

1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

- FSM-design procedure

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Impacts start of the FSM design procedure

- Counter-design procedure

Example "01 or 10" detector: a Mealy machine

- Output is a function of state and inputs
- Specify outputs on transition arcs

$\begin{array}{ccc|cc} & & & \begin{array}{c}\text { current }\end{array} & \begin{array}{c}\text { next } \\ \text { reset }\end{array} \\ \text { input }\end{array}$ state $\left.\begin{array}{c}\text { current } \\ \text { output }\end{array}\right]$

CSE370, Lecture 19 9

Synchronous (registered) Mealy machine

- Registered state and registered outputs
- No glitches on outputs
- No race conditions between communicating machines

CSE370, Lecture 19

Example "01 or 10" detector: a Moore machine

- Output is a function of state only
- Specify output in the state bubble

Comparing Moore and Mealy machines

- Moore machines
+ Safer to use because outputs change at clock edge
- May take additional logic to decode state into outputs
- Mealy machines
+ Typically have fewer states
+ React faster to inputs - don't wait for clock
- Asynchronous outputs can be dangerous
- We often design synchronous Mealy machines
- Design a Mealy machine
- Then register the outputs

Example "=01": Moore or Mealy?

- Recognize $A B=01$
- Mealy or Moore?

Registered Mealy
(actually Moore)

Example: A parity checker

- Serial input string
- OUT=1 if odd \# of 1 s in input
- OUT $=0$ if even \# of 1 s in input
- Let's do this for Moore and Mealy

Example: A parity checker

1. State diagram

Moore

CSE370, Lecture 19

Example: A parity checker						
1. State-transition table Moore						
Present State	Input	Next State	Present Output			
Even	0	Even	0			
Even	1	Odd	0			
Odd	0	Odd	1			
Odd	1	Even	$\begin{aligned} & 1 \text { Present } \\ & \text { State } \end{aligned}$	Input	Next State	Present Output
			Even	0	Even	0
			Even	1	Odd	1
			Odd	0	Odd	1
			Odd	1	Even	0
CSE370, Lecture 19						15

What was covered after midterm 1

- Combinational logic applications
- PLAs/PALs
- ROMs
- Adders

Multi-level logic
Timing diagrams

- Hazards

What was covered after midterm 1

- Sequential logic building blocks
- Latches (R-S and D)
- Flip-flops (D and T)
- Latch and flip-flop timing (setup/hold time, prop delay)
- Timing diagrams
- Asynchronous inputs and metastability
- Registers

What was covered after midterm 1

- Counters
- Timing diagrams

Shift registers

- Ring counters
- State diagrams and state-transition tables
- Counter design procedure

1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions
4, $2,3,4$,
4. Encode the next-state functions
5. Implement the design

- Self-starting counters

Midterm 2 logistics

- 45 minutes long (starts 10:35)
- Materials covered from
- Lectures 9 to 18 (but not Sequential Verilog or Moore/Mealy)
- HW 4,5, and 6
- Closed book/notes, no calculator
- Scratch papers provided
- Just have your pencil/pen and eraser
- Raise hand for questions (don't walk to get help)

