Lecture 20

- Logistics

Graded HW back today

- HW7 Due next Wednesday
- Lab 9 starts next week (2 week lab)
- Last lecture
- Intro to Moore and Mealy machines
- Today
- More Moore and Mealy machines
- A bigger FSM example: Hungry Robot Ant in Maze

Many things in the world are finite state machines (are we humans?) and most of them are far bigger and more complex than the examples we had so far. It is good to be able to understand and solve for a project-level FSM problem that's a lot more realistic to FSMs that you may design in industry or in grad school.

A vending machine: Moore machine

A vending machine: Implementation

Robot ant specifics

- Sensors: L and R antennae, 1 if touching wall
- Actuators: F - forward step, TL/TR - turn left/right
- Goal: find way out of maze to get to food.
- Strategy: keep the wall on the right

10

Example: ant brain (special case 2)

- Ant Lost

Design the ant-brain FSM

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

1. State Diagram

- Sensors on L and R antennae
- Sensor = " 1 " if touching wall; " 0 " if not touching wall $\Rightarrow L^{\prime} R^{\prime} \equiv$ no wall
$\Rightarrow \mathrm{L}^{\prime} \mathrm{R} \equiv$ wall on right
$\Rightarrow L R^{\prime} \equiv$ wall on left
- Movement
- $F \equiv$ forward one step
- TL \equiv turn left slightly
- $\mathrm{TR} \equiv$ turn right slightly

State Minimization, Encoding, and Circuit	
- Next class	

The maze
Design of different components

- Virtual maze
- 128×128 grid
\Rightarrow Stored in memory
$\Rightarrow 163848$-bit words
$Y X$ is maze addresses
$\Rightarrow X$ is the ant's horizontal position (7 bits)
$\Rightarrow Y$ is the ant's vertical position (7 bits)
- Each memory location says
$\diamond 00000001 \equiv$ No wall
$\diamond 00000010 \equiv$ North wall
$\Rightarrow 00000100 \equiv$ West wall
$\triangleright 00001000 \equiv$ South wall
$\triangleleft 00010000 \equiv$ East wall
Can have multiple walls
Example: 00001100
$\Rightarrow 00100000 \equiv$ Exit

CSE370, Lecture 20

Recommendations

- Memory controller
- Move horizontally: Increment or decrement X
- Move vertically: Increment or decrement Y
- Shift register for heading

- N: 0001
W. 0010

S. 0100

S: 0100
E: 1000

- Rotate right when ant turns right
- Rotate left when ant turns left
- Combinational logic for antennae logic

