
1CSE370, Lecture 22

Lecture 22

◆ Logistics
■ HW 8 posted today, due 3/11

■ Lab 9 this week

◆ Last lecture
■ Robot ant in maze

■ State matching for FSM simplification

◆ Today
■ General FSM minimization

2CSE370, Lecture 22

Two Methods for FSM Minimization

◆ Row matching
■ Easier to do by hand

■ Misses minimization opportunities

◆ Implication table
■ Guaranteed to find the most reduced FSM

■ More complicated algorithm (but still relatively easy to write a

program to do it)

3CSE370, Lecture 22

Simple row matching does not guarantee
most reduced state machine

Next State

Present State X=0 X=1 Output

S0 S0 S1 0

S1 S1 S2 1

S2 S2 S1 0

4CSE370, Lecture 22

The Implication chart method

◆ Here’s a slightly funkier FSM as an example

5CSE370, Lecture 22

Implication Chart Method

◆ Basic Idea: assume that all states are grouped
together and only split state pairs that must be split

◆ Algorithm
1. Draw a table with a box for every pair of states

2. Use output values to cross out boxes for pairs of states that

cannot be combined

3. Fill rest of table with transition pairs
• For each box and possible input, list pairs of destination states,

one per source state

4. Repeatedly do:
• If box (Si,Sj) contains some transition pair Sk-Sl corresponding to

an already crossed-out box then cross out box (Si,Sj)

• Until no more boxes can be crossed out

5. Combine all pairs of states that are not crossed out

6CSE370, Lecture 22

Step 1: Draw the table of pairs of states

7CSE370, Lecture 22

Step 2: Consider the outputs

8CSE370, Lecture 22

Step 3: Add transition pairs

0
1

C-R

9CSE370, Lecture 22

Step 3: Add transition pairs

Transitivity:
if states are combined then successor
states must be combined

0
1

C-R

0
1

0
1

0
1

Each pair listed first from Column state
then from Row state (not important)

⇒ if successor states cannot be combined
then states cannot be combined 10CSE370, Lecture 22

Step 4 (repeated): Consider transitions

11CSE370, Lecture 22

Final reduced FSM

12CSE370, Lecture 22

Next State

Present State X=0 X=1 Output

S0 S0 S1 0

S1 S1 S2 1

S2 S2 S1 0

S1

S2

S0 S1

S0-S2

S1–S1

Odd parity checker revisited

13CSE370, Lecture 22

symbolic state
transition table

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

◆ Multiple input example

10

01

11

00

00

01

1110

10

01

1100

10

00

11

00

11
10

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01

14CSE370, Lecture 22

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0-S1
S3-S0
S1-S4
S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

Minimized FSM

◆ Implication chart method
■ cross out incompatible states based on outputs

■ then cross out more cells if indexed chart entries are already

crossed out

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

15CSE370, Lecture 22

minimized state table
(S0==S4) (S3==S5)

present next state output
state 00 01 10 11
S0' S0' S1 S2 S3' 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

Minimized FSM

present next state output
state 00 01 10 11
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0-S1
S3-S0
S1-S4
S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

16CSE370, Lecture 22

Optimality and Moore vs Mealy

◆ Any two (Moore) FSMs with the same functionality
lead to the same minimized FSM (up to state names)
and this is best possible

■ Proof in CSE 322

◆ For Mealy FSMs need to do different marking for
outputs in step 2

■ List pairs of outputs for each input value and cross out boxes

with any pair of different outputs

■ Then erase these output pairs from the non-crossed-out

boxes and continue as in Step 3 for the Moore FSM

17CSE370, Lecture 22

Minimizing incompletely specified FSMs

◆ Equivalence of states is transitive when machine is fully
specified

◆ But its not transitive when don't cares are present

e.g., state output
S0 X 0 S1 is compatible with both S0 and S2
S1 1 X but S0 and S2 are incompatible
S2 X 1

◆ Hard to determine best grouping of states to yield the
smallest number of final states

18CSE370, Lecture 22

Minimizing FSMs isn’t always good

◆ Two FSMs for 0 → 1 edge detection

19CSE370, Lecture 22

In Q1 Q0 Q1
+ Q0

+

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 1 1 1

– 1 0 – –

Q1
+ = In (Q1 + Q0)

Q0
+ = In

Minimal state diagram: not necessarily
best circuit

Out = Q1’ Q0

20CSE370, Lecture 22

Minimal state diagram: not necessarily
best circuit

In Q1 Q0 Q1
+ Q0

+

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 1

1 1 1 1 1

Q1
+ = Q0

Q0
+ = In

Out = Q1’ Q0

21CSE370, Lecture 22

A little perspective

◆ These kinds of optimizations are what CAD(Computer
Aided Design)/EDA(Electronic Design Automation) is
all about

◆ The interesting problems are almost always
computationally intractable to solve optimally

◆ People really care about the automation of the design
of billion-transistor chips

