Lecture 22

Two Methods for FSM Minimization

O Logistics
= HW 8 posted today, due 3/11
= Lab 9 this week

O Last lecture
= Robot ant in maze
= State matching for FSM simplification

O Today
= General FSM minimization
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0 Row matching
= Easier to do by hand
= Misses minimization opportunities

O Implication table
= Guaranteed to find the most reduced FSM
= More complicated algorithm (but still relatively easy to write a
program to do it)
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Simple row matching does not guarantee
most reduced state machine

The Implication chart method
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0 Here's a slightly funkier FSM as an example
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Implication Chart Method

Step 1: Draw the table of pairs of states

O Basic Idea: assume that all states are grouped
together and only split state pairs that must be split

o Algor|thm
. Draw a table with a box for every pair of states
2. Use output values to cross out boxes for pairs of states that
cannot be combined
3. Fill rest of table with transition pairs
« For each box and possible input, list pairs of destination states,
one per source state
4. Repeatedly do:
e If box (S,S;) contains some transition pair S,-S, corresponding to
an already crossed-out box then cross out box (S;,S;)
¢ Until no more boxes can be crossed out
5. Combine all pairs of states that are not crossed out
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Step 2: Consider the outputs
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Step 3: Add transition pairs

Each pair listed first from Column state
then from Row state (not important)
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Transitivity:

if states are combined then successor
states must be combined

CSE370, Lecture 22 = if successor states cannot be combined

then states cannot be combined 9

Step 3: Add transition pairs
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Step 4 (repeated): Consider transitions
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Final reduced FSM
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Odd parity checker revisited
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More complex state minimization

O Multiple input example

inputs here

present output

next state
01 10 11

S1 S2 1
0
1
0
1
0
symbolic state
transition table
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Minimized FSM

0 Implication chart method
= cross out incompatible states based on outputs
= then cross out more cells if indexed chart entries are already
crossed out

S1
present next state output 0-5T
state 00 01 10 11 2|2
50 S1 5253 1 -54
S1 S0 S3 S1 s4 0 051
S2 S1 S3 S2 sS4 1 S3 g
s3 SI S0 S4 S5[ 0 /o
S4 SO S1 S2 S5 1 0-50 TS0
S5 S1 S4 S0 S5| 0 4 |stst
S$2-52 S;
5355 4-55
& 5T
s: 50-54
S5 S, 54-50
55 55-55
S0 s1 2 3 s4
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Minimized FSM

present next state output
state 00 01 10 11
St S0 S0 51 5253 T
S1 S0 S3 S1 sS4 0
0-5 S2 S1 S3 S2 s4 1
S2 | 2% S3 S1 S0 S4 S5 0
-5 S4 S0 St S2 S5 1
051 S5 S1 sS4 S0 S5 0
S3 2
4-S
SU-SU TS50 present next state output
s4 | S1-S1 = __state 00 01 10 11
323 z2 S0" S0 S1 S2 S3'| 1
= STST S1 S0' S3' S1 S3' 0
S5 50-54 S2 S1 S3 S2 s0'( 1
54_5 gggg S3 S1 S0' sO' S3 0
S0 S1 S2 S3 sS4
minimized state table
(S0==54) (S3==55)
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Optimality and Moore vs Mealy

O Any two (Moore) FSMs with the same functionality
lead to the same minimized FSM (up to state names)
and this is best possible

= Proof in CSE 322

0 For Mealy FSMs need to do different marking for
outputs in step 2
= List pairs of outputs for each input value and cross out boxes
with any pair of different outputs
= Then erase these output pairs from the non-crossed-out
boxes and continue as in Step 3 for the Moore FSM
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Minimizing incompletely specified FSMs

0 Equivalence of states is transitive when machine is fully
specified

0 But its not transitive when don't cares are present
e.g., state output
S0 X0 Sl1iscompatible with both SO and S2

S1  1X butS0and S2 are incompatible
S2 X1

0 Hard to determine best grouping of states to yield the
smallest number of final states
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Minimizing FSMs isn't always good

0 Two FSMs for 0 - 1 edge detection
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Minimal state diagram: not necessarily

best circuit
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Minimal state diagram:

not necessarily
best circuit
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A little perspective

O These kinds of optimizations are what CAD(Computer
Aided Design)/EDA(Electronic Design Automation) is
all about

O The interesting problems are almost always
computationally intractable to solve optimally

O People really care about the automation of the design
of billion-transistor chips
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