
1CSE370, Lecture 23

Lecture 23

◆ Logistics
■ HW8 due Wednesday, March 11

■ Ant extra credit due Friday, March 13

■ Final exam, Wednesday March 18, 2:30-4:20 pm here

■ Review session Monday, March 16, 4:30 pm, Place TBA

◆ Last lecture
■ General FSM Minimization

◆ Today
■ State encoding

� One-hot encoding

� Output encoding

■ State partitioning

2CSE370, Lecture 23

FSM design

■ FSM-design procedure

1.State diagram

2.state-transition table

3. State minimization

4. State encoding

5. Next-state logic minimization

6. Implement the design

3CSE370, Lecture 23

Usual example: A vending machine

◆ 15 cents for a cup of coffee

◆ Doesn’t take pennies or quarters

◆ Doesn’t provide any change

Vending
Machine
FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

4CSE370, Lecture 23

A vending machine: After state minimization

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

5CSE370, Lecture 23

A vending machine: State encoding

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

6CSE370, Lecture 23

A vending machine: Logic minimization

0 0 1 1

0 1 1 1

X X X X

1 1 1 1

Q1
D1

Q0

N

D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1
Open

Q0

N

D

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

0 1 1 0

1 0 1 1

X X X X

0 1 1 1

Q1
D0

Q0

N

D

7CSE370, Lecture 23

A vending machine: Implementation

8CSE370, Lecture 23

State encoding

◆ Assume n state bits and m states
■ 2n! / (2n – m)! possible encodings

� Example: 3 state bits, 4 states, 1680 possible state assignments

◆ Want to pick state encoding strategy that results in
optimizing your criteria

■ FSM size (amount of logic and number of FFs)

■ FSM speed (depth of logic and fan-in/fan-out)

■ FSM ease of design or debugging

9CSE370, Lecture 23

State-encoding strategies

◆ No guarantee of optimality
■ An intractable problem

◆ Most common strategies
■ Binary (sequential) – number states as in the state table

■ Random – computer tries random encodings

■ Heuristic – rules of thumb that seem to work well
� e.g. Gray-code – try to give adjacent states (states with an arc

between them) codes that differ in only one bit position

■ One-hot – use as many state bits as there are states

■ Output – use outputs to help encode states

■ Hybrid – mix of a few different ones (e.g. One-hot +

heuristic)

10CSE370, Lecture 23

One-hot encoding

◆ One-hot: Encode n states using n flip-flops
■ Assign a single “1” for each state

� Example: 0001, 0010, 0100, 1000

■ Propagate a single “1” from one flip-flop to the next
� All other flip-flop outputs are “0”

◆ The inverse: One-cold encoding
■ Assign a single “0” for each state

� Example: 1110, 1101, 1011, 0111

■ Propagate a single “0” from one flip-flop to the next
� All other flip-flop outputs are “1”

◆ “almost one-hot” encoding (modified one-hot encoding)
■ Use no-hot (000…0) for the initial (reset state)

■ Assumes you never revisit the reset state till reset again.

11CSE370, Lecture 23

One-hot encoding (con’t)

◆ Often the best/convenient approach for FPGAs
■ FPGAs have many flip-flops

◆ Draw FSM directly from the state diagram
■ + One product term per incoming arc

■ - Complex state diagram ⇒ complex design

■ - Many states ⇒ many flip flops

12CSE370, Lecture 23

Vending Machine:
One-hot encoded transition table

0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

1 1 – – – – –

0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

1 1 – – – – –

0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 – – – – –

1 0 0 0 – – 1 0 0 0 1

present state inputs next state output

Q3Q2Q1Q0 D N D3 D2D1D0 open

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

13CSE370, Lecture 23

Advantage of one-hot encoding:
Designing from the state diagram

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

14CSE370, Lecture 23

Output encoding

◆ Reuse outputs as state bits
■ Why create new functions when you can use outputs?

■ Bits from state assignments are the outputs for that state
� Take outputs directly from the flip-flops

◆ ad hoc - no tools
■ Yields small circuits for most FSMs

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

15CSE370, Lecture 23

Vending machine
--- already in output encoding form

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3

16CSE370, Lecture 23

FSM partitioning

◆ Break a large FSM into two or more smaller FSMs

◆ Rationale
■ Less states in each partition

� Simpler minimization and state assignment

� Smaller combinational logic

� Shorter critical path

■ But more logic overall

◆ Partitions are synchronous
■ Same clock!!!

17CSE370, Lecture 23

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

Example: Partition the machine

◆ Partition into two halves

18CSE370, Lecture 23

C1

C2

C5•S2

S6

S4

S5SB

C1•S1

C3•S2+
C4•S3

(C1•S1+
C3•S2+
C4•S3+
C5•S2)’

C4

S1

S3

S2 SA

C2•S6

C3+C5

(C2•S6)’

Introduce idle states for each partition

◆ SA and SB handoff control between machines

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

19CSE370, Lecture 23

S1 S6
C1

SAS1
C1

S1 S6
C2

SAS1
C2•S6

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state

20CSE370, Lecture 23

S2

S3

S5

S4
C4 C5

C3
S2

S3

SA

C3+C5

C4

S5

S4C5•S2

SB

C3•S2 +
C4•S3

SAS1
C2•S6

C2•S6

Partitioning rules (con’t)

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)
Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state
“OR exit conditions and invert”

21CSE370, Lecture 23

D

U
S0

S2

S1

S5

S3

S4

U

U

U

U

U

D

D
D

D

D

Example: Six-state up/down counter

◆ Break into 2 parts

U ≡ count up
D ≡ count down

22CSE370, Lecture 23

D•S0

U

S5

S3

S4

U

UU•S2

D

DD

SB
(D•S0+
U•S2)’

D•S3

U

S0

S2

S1

U

U

U•S5

D

D

D
SA

(D•S3 +
U•S5)’

Example: 6 state up/down counter

◆ Count sequence S0, S1, S2, S3, S4, S5
■ S2 goes to SA and holds, leaves after S5
■ S5 goes to SB and holds, leaves after S2
■ Down sequence is similar

23CSE370, Lecture 23

Example: 6 state up/down counter

D•S3

U

S0

S2

S1

U

U

U•S5

D

D

D
SA

(D•S3 +
U•S5)’

D•S0

U

S5

S3

S4

U

UU•S2

D

DD

SB
(D•S0+
U•S2)’

D

U
S0

S2

S1

S5

S3

S4

U

U

U

U

U

D

D
D

D

D

Compare behavior
on UUUUUU:

24CSE370, Lecture 23

Example: 6 state up/down counter

◆ 4-state machines need 2 state bits each – total 4 state bits
■ Enough to represent 16 states, though the combination of the two

FSMs has only 6 different configurations

◆ Why do this?
■ Each FSM may be much simpler to think about (and design logic for)

than the original FSM (not here, though)

■ Essential to do this partitioning for large FSMs

D•S3

U

S0

S2

S1

U

U

U•S5

D

D

D
SA

(D•S3 +
U•S5)’

D•S0

U

S5

S3

S4

U

UU•S2

D

DD

SB
(D•S0+
U•S2)’

25CSE370, Lecture 23

Minimize communication between partitions

◆ Ideal world: Two machines handoff control
■ Separate I/O, states, etc.

◆ Real world: Minimize handoffs and common I/O
■ Minimize number of state bits that cross boundary

■ Merge common outputs

26CSE370, Lecture 23

Mealy versus Moore partitions

◆ Mealy machine partitioning is undesirable
■ Inputs can affect outputs immediately

� “output” can be a handoff to another machine!!!

◆ Moore machine partitioning is desirable
■ Input-to-output path always broken by a flip-flop

■ But…may take several clock cycles for input to propagate to

output

