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Lecture 23

◆ Logistics
■ HW8 due Wednesday, March 11

■ Ant extra credit due Friday, March 13

■ Final exam, Wednesday March 18, 2:30-4:20 pm here

■ Review session Monday, March 16, 4:30 pm, Place TBA

◆ Last lecture
■ General FSM Minimization 

◆ Today
■ State encoding

� One-hot encoding

� Output encoding

■ State partitioning
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FSM design

■ FSM-design procedure

1.State diagram

2.state-transition table

3.  State minimization 

4.  State encoding

5.  Next-state logic minimization

6.  Implement the design
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Usual example: A vending machine 

◆ 15 cents for a cup of coffee

◆ Doesn’t take pennies or quarters

◆ Doesn’t provide any change
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A vending machine: After state minimization

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1
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A vending machine: State encoding

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1
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A vending machine: Logic minimization 
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A vending machine: Implementation

8CSE370, Lecture 23

State encoding

◆ Assume n state bits and m states
■ 2n! / (2n – m)! possible encodings

� Example: 3 state bits, 4 states, 1680 possible state assignments

◆ Want to pick state encoding strategy that results in 
optimizing your criteria

■ FSM size (amount of logic and number of FFs)

■ FSM speed (depth of logic and fan-in/fan-out)

■ FSM ease of design or debugging
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State-encoding strategies

◆ No guarantee of optimality 
■ An intractable problem

◆ Most common strategies
■ Binary (sequential) – number states as in the state table

■ Random – computer tries random encodings

■ Heuristic – rules of thumb that seem to work well
� e.g. Gray-code – try to give adjacent states (states with an arc 

between them) codes that differ in only one bit position

■ One-hot – use as many state bits as there are states

■ Output – use outputs to help encode states

■ Hybrid – mix of a few different ones (e.g. One-hot + 

heuristic)
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One-hot encoding

◆ One-hot: Encode n states using n flip-flops
■ Assign a single “1” for each state

� Example: 0001, 0010, 0100, 1000

■ Propagate a single “1” from one flip-flop to the next
� All other flip-flop outputs are “0”

◆ The inverse: One-cold encoding
■ Assign a single “0” for each state

� Example: 1110, 1101, 1011, 0111

■ Propagate a single “0” from one flip-flop to the next
� All other flip-flop outputs are “1”

◆ “almost one-hot” encoding (modified one-hot encoding)
■ Use no-hot (000…0) for the initial (reset state)

■ Assumes you never revisit the reset state till reset again.
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One-hot encoding (con’t)

◆ Often the best/convenient approach for FPGAs
■ FPGAs have many flip-flops

◆ Draw FSM directly from the state diagram
■ + One product term per incoming arc

■ - Complex state diagram ⇒ complex design

■ - Many states ⇒ many flip flops
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Vending Machine: 
One-hot encoded transition table

0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

1 1 – – – – –

0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

1 1     – – – – –

0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 – – – – –

1 0 0 0     – – 1 0 0 0 1

present state inputs next state output
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Advantage of one-hot encoding:
Designing from the state diagram
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D0 = Q0D’N’
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Output encoding

◆ Reuse outputs as state bits
■ Why create new functions when you can use outputs?

■ Bits from state assignments are the outputs for that state
� Take outputs directly from the flip-flops

◆ ad hoc - no tools
■ Yields small circuits for most FSMs

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs
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Vending machine 
--- already in output encoding form

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D’N’

D1 = Q0N + Q1D’N’

D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3

OPEN = Q3
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FSM partitioning

◆ Break a large FSM into two or more smaller FSMs

◆ Rationale
■ Less states in each partition

� Simpler minimization and state assignment

� Smaller combinational logic

� Shorter critical path

■ But more logic overall

◆ Partitions are synchronous
■ Same clock!!!
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C1
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Example: Partition the machine

◆ Partition into two halves
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C1

C2

C5•S2

S6

S4

S5SB

C1•S1

C3•S2+
C4•S3

(C1•S1+
C3•S2+
C4•S3+
C5•S2)’

C4

S1

S3

S2 SA

C2•S6

C3+C5

(C2•S6)’

Introduce idle states for each partition

◆ SA and SB handoff control between machines
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S1 S6
C1

SAS1
C1

S1 S6
C2

SAS1
C2•S6

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

Rule #2: Destination state transformation
Replace with exit transition from idle state
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Partitioning rules (con’t)

Rule #3: Multiple transitions with same source or destination
Source ⇒ Replace by transitions to idle state (SA)
Destination ⇒ Replace with exit transitions from idle state

Rule #4: Hold condition for idle state
“OR exit conditions and invert”
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Example: Six-state up/down counter

◆ Break into 2 parts

U ≡ count up
D ≡ count down
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D•S0
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Example: 6 state up/down counter

◆ Count sequence S0, S1, S2, S3, S4, S5
■ S2 goes to SA and holds, leaves after S5
■ S5 goes to SB and holds, leaves after S2
■ Down sequence is similar
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Example: 6 state up/down counter
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Compare behavior 
on UUUUUU:
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Example: 6 state up/down counter

◆ 4-state machines need 2 state bits each – total 4 state bits
■ Enough to represent 16 states, though the combination of the two

FSMs has only 6 different configurations 

◆ Why do this?
■ Each FSM may be much simpler to think about (and design logic for) 

than the original FSM  (not here, though)

■ Essential to do this partitioning for large FSMs
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Minimize communication between partitions

◆ Ideal world: Two machines handoff control
■ Separate I/O, states, etc.

◆ Real world: Minimize handoffs and common I/O
■ Minimize number of state bits that cross boundary

■ Merge common outputs
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Mealy versus Moore partitions

◆ Mealy machine partitioning is undesirable
■ Inputs can affect outputs immediately

� “output” can be a handoff to another machine!!!

◆ Moore machine partitioning is desirable
■ Input-to-output path always broken by a flip-flop

■ But…may take several clock cycles for input to propagate to 

output


