
Lecture 4

Logistics
HW1 due now
HW2 posted now and is due one week from todayHW2 posted now and is due one week from today
Lab1 going on this week
Feedback on lectures, hw, lab, anything else

Last lecture --- Boolean algebra
Axioms
Useful laws and theorems
Simplifying Boolean expressions

1CSE370, Lecture 4

Today’s lecture
One more example of Boolean logic simplification
Logic gates and truth tables in detail
Implementing logic functions

The “WHY” slide

Logic Gates and Truth Table
Now you know 0’s and 1’s and the basic Boolean algebra, now
you are ready to go back and forth between truth tableyou are ready to go back and forth between truth table,
Boolean expression, and logic gates. This ability to go back
and forth is an extremely useful skill designing and optimizing
computer hardware.

Implementing Logic Functions
Now with these basic tools you learned, you can “implement”
logic functions. You learned algebra in junior/high school and

2CSE370, Lecture 4

you use it for many things you do now. We use Boolean
algebra to implement logic functions that are used in the
computers. And these logic functions are used by computer
programs you write.

One more example of logic simplification

Example:
Z = A'BC + AB'C' + AB'C + ABC' + ABC

= A'BC + AB'(C’ + C) + AB(C' + C) distributive
= A'BC + AB’ + AB complementary
= A'BC + A(B' + B) distributive
= A'BC + A complementary

= BC + A absorption #2 Duality

3CSE370, Lecture 4

p y

(X •Y')+Y=X+Y} with X=BC and Y=A

X Y Z
0 0 0
0 1 0
1 0 0

X
Y Z

Logic gates and truth tables

AND X•Y XY
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X
Y

ZOR X+Y

X Y

4CSE370, Lecture 4

NOT X X’

Buffer X

X Y
0 1
1 0

X Y

X Y
0 0
1 1

X Y

X Y Z
0 0 1
0 1 1
1 0 1

X
Y Z

Logic gates and truth tables (con’t)

NAND X Y• XY
1 0 1
1 1 0

NOR

XOR

X Y+

X Y⊕

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X
Y

X Y Z
0 0 0
0 1 1

X
Y

Z

5CSE370, Lecture 4

XNOR X Y⊕

1 0 1
1 1 0
X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

Z
X
Y

Example: F = (A•B)’ + C•D

Boolean expressions logic gates

Example: F = C•(A+B)’

F

A

B

C

D

6CSE370, Lecture 4

A

B

C
F

Truth tables logic gates

Given a truth table
Write the Boolean expression
Minimize the Boolean expressionMinimize the Boolean expression
Draw as gates
Example:

A B C F
0 0 0 0
0 0 1 0
0 1 0 1

F = A’BC’+A’BC+AB’C+ABC
= A’B(C’+C)+AC(B’+B)
= A’B+AC

7CSE370, Lecture 4

0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

1-bit binary adder
Inputs: A, B, Carry-in
Outputs: Sum Carry-out

Example: A binary full adder

A
B

Cin Cout
SumAdder

Outputs: Sum, Carry-out

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

0
1
1
0
1

0
0
0
1
0 Cout = A'BCin + AB'Cin + ABCin' + ABCin

Sum = A'B'Cin + A'BCin' + AB'Cin' + ABCin

Cin

8CSE370, Lecture 4

1 0 0
1 0 1
1 1 0
1 1 1

1
0
0
1

0
1
1
1

Cout A BCin + AB Cin + ABCin + ABCin

Both Sum and Cout can be minimized.

Full adder: Sum

Before Boolean minimization
Sum = A'B'Cin + A'BCin'

After Boolean minimization
Sum = (A⊕B) ⊕ Cin

+ AB'Cin' + ABCin
()

9CSE370, Lecture 4

Before Boolean minimization
Cout = A'BCin + AB'Cin

After Boolean minimization
Cout = BCin + ACin + AB

Full adder: Carry-out

+ ABCin' + ABCin

10CSE370, Lecture 4

Preview: A 2-bit ripple-carry adder

A1 B1

A B
A2 B2

CoutCin

Sum1

CoutCin

1-Bit Adder

Sum2

CoutCin0

11CSE370, Lecture 4

Sum

Overflow

Many possible mappings

Many ways to map expressions to gates
Example: Z A B C D A B C D= • • +() = • • +()

_ _ _ _

12CSE370, Lecture 4

What is the optimal gate realization?

We use the axioms and theorems of Boolean algebra
to “optimize” our designs

Design goals vary
Reduce the number of gates?
Reduce the number of gate inputs?
Reduce number of chips and/or wire?

How do we explore the tradeoffs?
Logic minimization: Reduce number of gates and complexity

13CSE370, Lecture 4

Logic optimization: Maximize speed and/or minimize power
CAD tools

We can implement any logic function from NOT, NOR,
and NAND

Example: (X and Y) not (X nand Y)

Minimal set

X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

Example: (X and Y) = not (X nand Y)

In fact, we can do it with only NOR or only NAND
NOT is just NAND or NOR with two identical inputs

14CSE370, Lecture 4

NAND and NOR are duals: Can implement one from the other
X nand Y = not ((not X) nor (not Y))
X nor Y = not ((not X) nand (not Y))

