CSE 370 Homework 3 Solutions

1. Static Hazards

a) F = AB + A'C'

Kmap of this function shown here; add logic for blue box to eliminate static 1 hazard

Static 1 Hazards:

 $(A,B,C) = (1,1,0) \rightarrow (0,1,0)$

New circuit is: F = AB + A'C' + BC'

b) F = A'C + B'C' + ABD

Kmap for this function is shown below; red lines are already implemented in function, blue terms must be added to eliminate the 3 static 1 hazards

Static 1 Hazards:

(A,B,C,D) = (0,0,1,1) -> (0,0,0,1)

(A,B,C,D) = (0,0,1,0) -> (0,0,0,0)

(A,B,C,D) = (1,1,1,1) -> (0,1,1,1)

(A,B,C,D) = (1,1,0,1) -> (1,0,0,1)

New circuit is: F = A'C + B'C' + ABD + A'B' + A'BD + AC'D

Note: OR gates should be 1 6-input OR gate, but visio only has 5-input OR gates

c) F = (W+X+Y)(X'+Z')

Kmap for this function is shown below; red lines are already implemented in function, blue term must be added to eliminate the static 0 hazard

Static 0 Hazards:

(W,X,Y,Z) = (0,0,0,1) -> (0,1,0,1)

New circuit is:

2. Timing Diagrams

The non-oscillating steady state for this circuit can easily be found by assuming the node to the right of S is a 1 and tracing the resulting path. From S, you can find that B is a 1, and C is therefore a 0. D is then known to be a 1, and at the other end of the loop, A is of course the same value as the node to the right of S, a 1.

	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100,0 ns	120,0 ns	140,0 ns	160,0 ns	180,0 ns	200,0 ns
	10.0 ns										
A											
В											
С											
D											

Note: for this timing diagram, assume that the steady state is at 0ps, and the switch is changed to the down position at t=10ns. Also, assume T_{pd} =10ns.

3. 2 bit adder

Α	В	С	D	Х	Y	Z
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

X = AC + ABD + BCD

Y = A'B'C + A'CD' + A'BC'D + AB'C' + AC'D' + ABCD

 $Z = BD' + B'D = B \oplus D$

To implement this circuit, you can use an 8 to 1 multiplexer for each output. Since some outputs (Y and Z) depend on more than 3 inputs (the number of select bits for an 8 to 1 mux), you can use the other input for the 2 bit adder as an input to the multiplexer. Many implementations are possible, one is shown here:

Note: 0th position for muxes is at top. A is most significant select bit.

4. Full Adder using multiplexers

a) using 2 8-to-1 multiplexers

b) using 2 4-to-1 multiplexers

c) see solution for d)

d) using 5 2-to-1 MUXes

5. Decoders

a) $f(P,Q,R) = \overline{(PQ+R)}$ using 3:8 decoder

Note: Only 1 6-input OR gate is necessary, but visio only has up to 5 inputs, so the OR gate is drawn this way

6. Implementation Methods

Note: Function can be reduced to F = AC + AD

a) 8:1 mux

b) 4:16 decoder

Note: Once again, visio does not have 6-input OR gates, so a tree of OR gates is used.

c) PLA-like structure

7. Rotate – assume this is supposed to implement a rotate right function (left is also acceptable), inputs are A[7:0] and R[2:0], outputs are B[7:0]