
Spring 2010 CSE370 - I - Introduction 1

CSE370: Introduction to Digital Design

  Course staff
  Carl Ebeling
  TAs: Corey Olson (grad), Steven Lockhart (ugrad)
  Student lab assistants in 003

  Course web
  www.cs.washington.edu/370/
  You should already be on the mailing list

  cse370a_sp10@u.washington.edu

  Course text
  Contemporary Logic Design, 2e, Katz/Borriello, Prentice-Hall

  Today’s agenda
  Class administration and overview of course web
  Course objectives and approach
  A brief introduction to the course

Spring 2010 CSE370 - I - Introduction 2

Why are you here?

  Obvious reasons
  this course is part of the CS/CompE requirements
  it is the implementation basis for all modern computing devices

  building large things from small components
  computers = transistors + wires - it’s all in how they are interconnected

  provide a model of how a computer works

  More important reasons
  the inherent parallelism in hardware is your first exposure to

parallel computation
  it offers an interesting counterpoint to programming and is

therefore useful in furthering our understanding of computation

Spring 2010 CSE370 - I - Introduction 3

What will we learn in CSE370?

  The language of logic design
  Boolean algebra, logic minimization, state, timing, CAD tools

  The concept of state in digital systems
  analogous to variables and program counters in software systems

  How to specify/simulate/compile/realize our designs
  hardware description languages
  tools to simulate the workings of our designs
  logic compilers to synthesize the hardware blocks of our designs
  mapping onto programmable hardware

  Contrast with programming
  sequential and parallel implementations
  specify algorithm as well as computing/storage resources it will use

Spring 2010 CSE370 - I - Introduction 4

What is logic design?

  What is design?
  given a specification of a problem, come up with a way of solving

it choosing appropriately from a collection of available
components

  while meeting some criteria for size, cost, power, beauty,
elegance, etc.

  What is logic design?
  determining the collection of digital logic components to perform

a specified control and/or data manipulation and/or
communication function and the interconnections between them

  which logic components to choose? – there are many
implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)

  the design may need to be optimized and/or transformed to meet
design constraints

Spring 2010 CSE370 - I - Introduction 5

Applications of logic design

  Conventional computer design
  CPUs, busses, peripherals

  Networking and communications
  phones, modems, routers

  Embedded products
  in cars, toys, appliances, entertainment devices

  Scientific equipment
  testing, sensing, reporting

Spring 2010 CSE370 - I - Introduction 6

What is digital hardware?

  Physical way to represent different states (typically two: “0” and “1”)
  example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
  example: pair of transmission wires where a “0” or “1” is distinguished

by which wire has a higher voltage (differential)
  example: orientation of magnetization signifies a “0” or a “1”

  A way to save values
  Change a saved value
  Sense a stored value

  A way to perform logical functions on values
  example: if two wires are both “1”, make another be “1” (AND)
  example: if at least one of two wires is “1”, make another be “1” (OR)
  example: if a wire is “1”, make another be “0” (NOT)

  A way to send values from one function to another
  examples: wire, optical fiber, radio, chemical pathway

Binary numbers in C/Java

  00010101
  10000101

  Count the number of 1’s in the binary representation of a C/
Java integer
  int foo;

  Count the number of bits in a C/Java variable
  char foo;
  short foo;
  long foo;

  Find the most significant 1 in a C/Java integer

Spring 2010 CSE370 - I - Introduction 7

Spring 2010 CSE370 - I - Introduction 8

What is happening now in digital design?
  Important trends in how industry does hardware design

  larger and larger designs
  shorter and shorter time to market
  cheaper and cheaper products
  design time often dominates cost

  Scale
  pervasive use of computer-aided design tools over hand methods
  multiple levels of design representation

  Time
  emphasis on abstract design representations
  programmable rather than fixed function components
  automatic synthesis techniques
  importance of sound design methodologies

  Cost
  higher levels of integration
  use of simulation to debug designs
  simulate and verify before you build

Spring 2010 CSE370 - I - Introduction 9

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

CSE 370: concepts/skills/abilities

  Understanding the basics of logic design (concepts)
  Understanding sound design methodologies (concepts)
  Modern specification methods (concepts)
  Familiarity with a full set of CAD tools (skills)
  Realize digital designs in an implementation technology (skills)
  Appreciation for the differences and similarities (abilities)

in hardware and software design

Spring 2010 CSE370 - I - Introduction 10

scope of CSE 370

Representation of digital designs

  Physical devices (transistors)
  Switches
  Truth tables
  Boolean algebra
  Gates
  Waveforms
  Finite-state behavior
  Register-transfer behavior
  Processor architecture
  Concurrent abstract specifications

Spring 2010 CSE370 - I - Introduction 11

Computation: abstract vs. implementation

  Up to now, computation has been a mental exercise (paper,
programs)

  This class is about physically implementing computation using
physical devices that use voltages to represent logical values

  Basic units of computation are:
  representation: "0", “1" on a wire

 set of wires (e.g., for binary ints)
  assignment: x = y
  data operations: x + y – 5
  control:

 sequential statements: A; B; C;
 conditionals: if x == 1 then y;
 loops: for (i = 1 ; i == 10, i++) {…}
 procedures: A; proc(...); B;

  We will study how each of these are implemented in hardware
and composed into computational structures

Spring 2010 CSE370 - I - Introduction 12

Class components

  Combinational logic
  outputt = F(inputt)

  Sequential logic
  outputt = F(outputt-1, inputt)

  output dependent on history
  concept of a time step (clock)

  Basic computer architecture
  how a CPU executes instructions

  Tools to make our job easier/efficient
  designs that work the first time
  designs that are efficient and easy to change/maintain

Spring 2010 CSE370 - I - Introduction 13

easy to implement
with CMOS transistors

Combinational logic

  Common combinational logic elements are called logic gates

  Buffer, NOT

  AND, NAND

  OR, NOR

Spring 2010 CSE370 - I - Introduction 14

Sequential logic

  Common sequential logic elements are called flip-flops
  Flip-flops only change their output after a clocking event

Spring 2010 CSE370 - I - Introduction 15

Mixing combinational and sequential logic

  What does this very simple circuit do?

Spring 2010 CSE370 - I - Introduction 16

Combinational or sequential?

  assignment: x = y;
  data operations: x + y – 5
  sequential statements: A; B; C;
  conditionals: if x == 1 then y;
  loops: for (i = 1 ; i == 10, i++) {…}
  procedures/methods: A; proc(...); B;

Spring 2010 CSE370 - I - Introduction 17

A quick combinational logic example

  Calendar subsystem: number of days in a month (to control
watch display)
  used in controlling the display of a wrist-watch LCD screen

  inputs: month, leap year flag
  outputs: number of days

Spring 2010 CSE370 - I - Introduction 18

Implementation in software

integer number_of_days (month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1) then return (29)

else return (28);
case 3: return (31);
...
case 12: return (31);
default: return (0);

}
}

Spring 2010 CSE370 - I - Introduction 19

leap month

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
1110 – – – – –
1111 – – – – –

Implementation as a
combinational digital system

  Encoding:
  how many bits for each input/output?
  binary number for month
  four wires for 28, 29, 30, and 31

  Behavior:
  combinational
  truth table

specification

Spring 2010 CSE370 - I - Introduction 20

symbol
for and

symbol
for or

symbol
for not

Combinational example (cont’d)

  Truth-table to logic to switches to gates
  d28 = “1 when month=0010 and leap=0”
  d28 = m8'•m4'•m2•m1'•leap'

  d31 = “1 when month=0001 or month=0011 or ... month=1100”
  d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ...

(m8•m4•m2'•m1')
  d31 = can we simplify more? month leap d28 d29 d30 d31

0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Spring 2010 CSE370 - I - Introduction 21

Combinational example (cont’d)

  d28 = m8'•m4'•m2•m1'•leap’
  d29 = m8'•m4'•m2•m1'•leap
  d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +

 (m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
 = (m8'•m4•m1') + (m8•m4'•m1)

  d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +
 (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) +
 (m8•m4'•m2'•m1') + (m8•m4'•m2•m1') +
 (m8•m4•m2'•m1')

Spring 2010 CSE370 - I - Introduction 22

system

data-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

transistors

Design hierarchy

combinational
logic

Challenge problems

  Write fast code for the following:

  Count the number of 1’s in a C/Java integer

  Find the most significant 1 in a C/Java integer

  Write code that swaps two int’s without any extra temp
variable

Spring 2010 CSE370 - I - Introduction 23

