Realizing Boolean logic

- Algebraic expressions to gates
- Mapping between different gates
- Discrete logic gate components (used in lab 1)

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$$
S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '+A B^{\prime} C i n^{\prime}+A B C i n
$$

$$
\text { Cout }=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n
$$

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify expressions - e.g., full adder's carry-out function

$$
\begin{aligned}
\text { Cout } & =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n+A B C i n \\
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \\
& =A^{\prime} B C i B C i n+A B C i n \\
& =\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i B^{\prime}+A B C i n \\
& =(1) B C i n+A B^{\prime} C i n+A B C^{\prime}+A+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n \\
& =B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n+A B C i n \\
& =B C i n+A(1) C i n+A B C i n^{\prime}+A B C i n \\
& =B C i n+A C i n+A B\left(C i n^{\prime}+C i n\right) \\
& =B C i n+A C i n+A B(1)
\end{aligned}
$$

$$
=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB} \quad \text { adding extra terms }
$$

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$$
\begin{aligned}
& \text { Cout }=B C i n+A C i n+A B \\
& \begin{aligned}
S & =A^{\prime} B^{\prime} C i n+A^{\prime} B C i n \prime+A B^{\prime} C i n \\
& =A^{\prime}\left(B^{\prime} C i n+B C i C^{\prime}\right)+A\left(B^{\prime} C i n\right. \\
& =A^{\prime} Z+A Z^{\prime} \\
& =A \text { xor } Z=A \text { xor }(B \text { xor Cin })
\end{aligned}
\end{aligned}
$$

From Boolean expressions to logic gates

- NOT $X^{\prime} \quad \bar{X} \quad \sim X \quad X / \quad X+D$ - Y

X	Y
0	1
1	0

- AND $X \cdot Y \quad X Y \quad X \wedge Y$

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

- OR X+Y Xv Y

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

From Boolean expressions to logic gates (contd)

- WAND

- NOR

- XOR $X \oplus Y$

$X \underline{x o r} Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")
- XNOR $X=Y$

X nor $Y=X Y+X^{\prime} Y^{\prime}$ X and Y are the same ("equality", "coincidence")

Full adder: Carry-out

Before Boolean minimization
Cout $=\mathrm{A}^{\prime} \mathrm{BCin}+\mathrm{AB} \mathrm{A}^{\prime} \mathrm{Cin}$
$+\mathrm{ABCin}{ }^{\prime}+\mathrm{ABCin}$

After Boolean minimization

$$
\text { Cout }=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}
$$

Full adder: Sum

Before Boolean minimization
Sum $=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '$
$+\mathrm{AB}^{\prime} \mathrm{Cin}^{\prime}+\mathrm{ABCin}$

After Boolean minimization Sum $=(A \oplus B) \oplus$ Cin

Mapping truth tables to logic gates

- Given a truth table:

1. Write the Boolean expression
2. Minimize the Boolean expression
3. Draw as gates
4. Map to available gates

$$
\text { (2) } \downarrow \begin{aligned}
F & =A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C \\
& =A^{\prime} B\left(C^{\prime}+C\right)+A C\left(B^{\prime}+B\right) \\
& =A^{\prime} B+A C
\end{aligned}
$$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Conversion between gate types (cont'd)

- Example: verify equivalence of two forms

$$
\left.\begin{array}{rlrl}
Z & =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right.
\end{array}\right\}^{\prime}{ }^{\prime}= \begin{cases}\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right) \\
& = \\
& \left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =(A \cdot B)+(C \cdot D)\end{cases}
$$

Activity: convert to NAND gates

Example: tally circuit (outputs \# of 1 s in inputs)

X1	X2	X3	T2	T1
$\mathbf{0}$	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{X1} 1^{\prime} \mathrm{X} 2^{\prime} \mathrm{X} 3+\mathrm{X} 1^{\prime} \mathrm{X} 2 \mathrm{X} 3^{\prime} \\
& +\mathrm{X} 1 \mathrm{X} 2^{\prime} \mathrm{X} 3^{\prime}+\mathrm{X} 1 \mathrm{X} 2 \mathrm{X3} \\
& =\left(\mathrm{X} 1^{\prime} \mathrm{X} 2^{\prime}+\mathrm{X} 1 \mathrm{X} 2\right) \mathrm{X} 3 \\
& +\left(\mathrm{X} 1^{\prime} \mathrm{X} 2+\mathrm{X} 1 \mathrm{X} 2^{\prime}\right) \mathrm{X} 3^{\prime} \\
& =(\mathrm{X} 1 \text { xor X2})^{\prime} \mathrm{X} 3 \\
& +(\mathrm{X} 1 \text { xor X2) X3' } \\
& =(\mathrm{X} 1 \text { xor X2) xor X3 } \\
\mathrm{T} 2 & =X 1^{\prime} \mathrm{X} 2 \mathrm{X} 3+\mathrm{X} 1 \mathrm{X} 2^{\prime} \mathrm{X} 3 \\
& +\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3^{\prime}+\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3 \\
& =X 1^{\prime}(\mathrm{X} 2 \mathrm{X} 3)+\mathrm{X} 1(\mathrm{X} 2+\mathrm{X} 3)
\end{aligned}
$$

From Boolean expressions to logic gates

- More than one way to map expressions to gates
- e.g., $Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right.$

Waveform view of logic functions

- Just a sideways truth table
- but note how edges don't line up exactly
- it takes time for a gate to switch its output!

Choosing different realizations of a function

A	B	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

two-level realization (we don't count NOT gates)
multi-level realization (gates with fewer inputs)

XOR gate (easier to draw but costlier to build)

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
- delays are different
- glitches (hazards) may arise - these could be bad, it depends
- variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Which realization is best?

- Reduce number of inputs
- literal: input variable (complemented or not)
- can approximate cost of logic gate as 2 transistors per literal
- why not count inverters?
- fewer literals means less transistors
- smaller circuits
fewer inputs implies faster gates
- gates are smaller and thus also faster
- fan-ins (\# of gate inputs) are limited in some technologies
- the programmable logic we'll be using later in the quarter
- Reduce number of gates
- fewer gates (and the packages they come in) means smaller circuits
- directly influences manufacturing costs

Which realization is best? (cont'd)

- Reduce number of levels of gates
- fewer level of gates implies reduced signal propagation delays
- minimum delay configuration typically requires more gates
- wider, less deep circuits
- Hazards/glitches
- one without hazards may be preferable/necessary
- How do we explore tradeoffs between increased circuit delay and size?
- automated tools to generate different solutions
- logic minimization: reduce number of gates and complexity
- logic optimization: reduction while trading off against delay

Random logic gates

- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
- Texas Instruments Logic Data Book - the yellow "bible"
- all common packages listed and characterized (delays, power)
- typical packages:
- in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few of these parts are still in use
- However, parts libraries exist for chip design
- designers reuse already characterized logic gates on chips
- same reasons as before
- difference is that the parts don't exist in physical inventory created as needed

Some logic gate components

Quad 2-input NANDs - '00

6 inverters (NOTs) - ‘04

Quad 2-input NORs - '02

3 3-input NANDs - ‘10

