
Spring 2010 CSE370 - III - Realizing Boolean Logic 1

Realizing Boolean logic

  Algebraic expressions to gates
  Mapping between different gates
  Discrete logic gate components (used in lab 1)

Spring 2010 CSE370 - III - Realizing Boolean Logic 2

A simple example: 1-bit binary adder

  Inputs: A, B, Carry-in
  Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

Cin Cout

Spring 2010 CSE370 - III - Realizing Boolean Logic 3

Apply the theorems to simplify expressions

  The theorems of Boolean algebra can simplify expressions
  e.g., full adder’s carry-out function

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
 = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
 = A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
 = (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
 = (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
 = B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
 = B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
 = B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
 = B Cin + A (1) Cin + A B Cin’ + A B Cin
 = B Cin + A Cin + A B (Cin’ + Cin)
 = B Cin + A Cin + A B (1)
 = B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

Spring 2010 CSE370 - III - Realizing Boolean Logic 4

A simple example: 1-bit binary adder

  Inputs: A, B, Carry-in
  Outputs: Sum, Carry-out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin
 = A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)
 = A’ Z + A Z’
 = A xor Z = A xor (B xor Cin)

A A A A A
B B B B B

S S S S S

Cin Cout

Spring 2010 CSE370 - III - Realizing Boolean Logic 5

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

  NOT X’ X ~X X/

  AND X • Y XY X ∧ Y

  OR X + Y X ∨ Y

Spring 2010 CSE370 - III - Realizing Boolean Logic 6

X
Y

Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

  NAND

  NOR

  XOR
 X ⊕ Y

  XNOR
 X = Y

Before Boolean minimization
 Cout = A'BCin + AB'Cin
 + ABCin' + ABCin

After Boolean minimization
 Cout = BCin + ACin + AB

Full adder: Carry-out

Spring 2010 7 CSE370 - III - Realizing Boolean Logic

Full adder: Sum

Before Boolean minimization
 Sum = A'B'Cin + A'BCin'
 + AB'Cin' + ABCin

After Boolean minimization
 Sum = (A⊕B) ⊕ Cin

Spring 2010 8 CSE370 - III - Realizing Boolean Logic

Preview: A 2-bit ripple-carry adder

A1 B1

Cout Cin

Sum1

A

Sum

Cout Cin

B

1-Bit Adder

A2 B2

Sum2

Cout Cin 0

Spring 2010 9 CSE370 - III - Realizing Boolean Logic

Mapping truth tables to logic gates

  Given a truth table:
1.  Write the Boolean expression
2.  Minimize the Boolean expression
3.  Draw as gates
4.  Map to available gates

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F = A’BC’+A’BC+AB’C+ABC
 = A’B(C’+C)+AC(B’+B)
 = A’B+AC

1

2

3

4

Spring 2010 10 CSE370 - III - Realizing Boolean Logic

Spring 2010 CSE370 - III - Realizing Boolean Logic 11

conserve
"bubbles"

conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NOR A

B

C

D

Z

Conversion between gate types

  Example: map AND/OR network to NOR-only network
A

B

C

D

Z

Spring 2010 CSE370 - III - Realizing Boolean Logic 12

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

 = { (A’ + B’) • (C’ + D’) }’

 = (A’ + B’)’ + (C’ + D’)’

 = (A • B) + (C • D)

Conversion between gate types (cont’d)

  Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Spring 2010 CSE370 - III - Realizing Boolean Logic 13

Activity: convert to NAND gates

Spring 2010 CSE370 - III - Realizing Boolean Logic 14

X1 X2 X3 T2 T1

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Example: tally circuit (outputs # of 1s in inputs)

T1 = X1’ X2’ X3 + X1’ X2 X3’
 + X1 X2’ X3’ + X1 X2 X3

 = (X1’ X2’ + X1 X2) X3
 + (X1’ X2 + X1 X2’) X3’
 = (X1 xor X2)’ X3
 + (X1 xor X2) X3’
 = (X1 xor X2) xor X3

T2 = X1’ X2 X3 + X1 X2’ X3
 + X1 X2 X3’ + X1 X2 X3

 = X1’ (X2 X3) + X1 (X2 + X3)

Spring 2010 CSE370 - III - Realizing Boolean Logic 15

use of 3-input gate

From Boolean expressions to logic gates

  More than one way to map expressions to gates

  e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

Spring 2010 CSE370 - III - Realizing Boolean Logic 16

time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

  Just a sideways truth table
  but note how edges don’t line up exactly
  it takes time for a gate to switch its output!

Spring 2010 CSE370 - III - Realizing Boolean Logic 17

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Spring 2010 CSE370 - III - Realizing Boolean Logic 18

Are all realizations equivalent?

  Under the same input stimuli, the three alternative
implementations have almost the same waveform behavior
  delays are different
  glitches (hazards) may arise – these could be bad, it depends
  variations due to differences in number of gate levels and structure

  The three implementations are functionally equivalent

Spring 2010 CSE370 - III - Realizing Boolean Logic 19

Which realization is best?

  Reduce number of inputs
  literal: input variable (complemented or not)

  can approximate cost of logic gate as 2 transistors per literal
  why not count inverters?

  fewer literals means less transistors
  smaller circuits

  fewer inputs implies faster gates
  gates are smaller and thus also faster

  fan-ins (# of gate inputs) are limited in some technologies
  the programmable logic we’ll be using later in the quarter

  Reduce number of gates
  fewer gates (and the packages they come in) means smaller circuits

  directly influences manufacturing costs

Spring 2010 CSE370 - III - Realizing Boolean Logic 20

Which realization is best? (cont’d)

  Reduce number of levels of gates
  fewer level of gates implies reduced signal propagation delays
  minimum delay configuration typically requires more gates

  wider, less deep circuits

  Hazards/glitches
  one without hazards may be preferable/necessary

  How do we explore tradeoffs between increased circuit delay
and size?
  automated tools to generate different solutions
  logic minimization: reduce number of gates and complexity
  logic optimization: reduction while trading off against delay

Spring 2010 CSE370 - III - Realizing Boolean Logic 21

Random logic gates

  Transistors quickly integrated into logic gates (1960s)
  Catalog of common gates (1970s)

  Texas Instruments Logic Data Book – the yellow “bible”
  all common packages listed and characterized (delays, power)
  typical packages:

  in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

  Today, very few of these parts are still in use
  However, parts libraries exist for chip design

  designers reuse already characterized logic gates on chips
  same reasons as before
  difference is that the parts don’t exist in physical inventory –

created as needed

Some logic gate components

Spring 2010 CSE370 - III - Realizing Boolean Logic 22

Quad 2-input NANDs – ‘00 Quad 2-input NORs – ‘02

6 inverters (NOTs) – ‘04 3 3-input NANDs – ‘10

