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Realizing Boolean logic 

  Algebraic expressions to gates 
  Mapping between different gates 
  Discrete logic gate components (used in lab 1) 
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A simple example: 1-bit binary adder 

  Inputs: A, B, Carry-in 
  Outputs: Sum, Carry-out 

A 
B 

Cin 
Cout 

S 
A  B  Cin  Cout  S 
0  0  0       
0  0  1          
0  1  0       
0  1  1 
1  0  0       
1  0  1          
1  1  0       
1  1  1       

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin 

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin 

A  A  A  A  A 
B  B  B  B  B 

S  S  S  S  S 

Cin Cout 
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Apply the theorems to simplify expressions 

  The theorems of Boolean algebra can simplify expressions 
  e.g., full adder’s carry-out function  

Cout  =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin 
 =  A’ B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin  +  A B Cin 
 =  A’ B Cin  +  A B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin 
 =  (A’ + A) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin 
 =  (1) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin 
 =  B Cin  +  A B’ Cin  + A B Cin’  +  A B Cin  +  A B Cin 
 =  B Cin  +  A B’ Cin  +  A B Cin  +  A B Cin’  +  A B Cin 
 =  B Cin  +  A (B’ + B) Cin  +  A B Cin’  +  A B Cin 
 =  B Cin  +  A (1) Cin  +  A B Cin’  +  A B Cin 
 =  B Cin  +  A Cin  +  A B (Cin’ +  Cin) 
 =  B Cin  +  A Cin  +  A B (1) 
 =  B Cin  +  A Cin  +  A B  adding extra terms 

creates new factoring 
opportunities 
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A simple example: 1-bit binary adder 

  Inputs: A, B, Carry-in 
  Outputs: Sum, Carry-out 

A 
B 

Cin 
Cout 

S 
A  B  Cin  Cout  S 
0  0  0       
0  0  1          
0  1  0       
0  1  1 
1  0  0       
1  0  1          
1  1  0       
1  1  1       

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

Cout = B Cin  +  A Cin  +  A B  

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin 
   = A’ (B’ Cin + B Cin’ ) + A (B’ Cin’ + B Cin ) 
   = A’ Z + A Z’ 
   = A xor Z = A xor (B xor Cin) 

A  A  A  A  A 
B  B  B  B  B 

S  S  S  S  S 

Cin Cout 
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X  Y  Z 
0  0  0 
0  1  0 
1  0  0 
1  1  1 

X  Y 
0  1 
1  0 

X  Y  Z 
0  0  0 
0  1  1 
1  0  1 
1  1  1 

X Y 

X 

X 

Y 

Y 

Z 

Z 

From Boolean expressions to logic gates 

  NOT  X’  X  ~X      X/ 

  AND  X • Y  XY  X ∧ Y 

  OR  X + Y   X ∨ Y 
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X 
Y 

Z 

X  Y  Z 
0  0  1 
0  1  1 
1  0  1 
1  1  0 

X  Y  Z 
0  0  1 
0  1  0 
1  0  0 
1  1  0 

Z 
X 

Y 

X 
Y 

Z 

X  Y  Z 
0  0  1 
0  1  0 
1  0  0 
1  1  1 

X  Y  Z 
0  0  0 
0  1  1 
1  0  1 
1  1  0 

Z 
X 
Y 

X xor Y = X Y’ + X’ Y 
X or Y but not both  

("inequality", "difference") 

X xnor Y = X Y + X’ Y’ 
X and Y are the same  

("equality", "coincidence") 

From Boolean expressions to logic gates (cont’d) 

  NAND 

  NOR 

  XOR 
  X ⊕ Y 

  XNOR 
  X = Y 



Before Boolean minimization 
  Cout = A'BCin + AB'Cin  
             + ABCin' + ABCin 

After Boolean minimization  
  Cout = BCin + ACin + AB 

Full adder: Carry-out 
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Full adder: Sum 

Before Boolean minimization 
 Sum = A'B'Cin + A'BCin' 
             + AB'Cin' + ABCin 

After Boolean minimization  
  Sum = (A⊕B) ⊕ Cin 
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Preview: A 2-bit ripple-carry adder 

A1 B1 

Cout Cin 

Sum1 

A 

Sum 

Cout Cin 

B 

1-Bit Adder 

A2 B2 

Sum2 

Cout Cin 0 
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Mapping truth tables to logic gates 

  Given a truth table: 
1.  Write the Boolean expression 
2.  Minimize the Boolean expression 
3.  Draw as gates 
4.  Map to available gates 

A  B  C    F 
0  0  0    0 
0  0  1    0 
0  1  0    1 
0  1  1    1 
1  0  0    0 
1  0  1    1 
1  1  0    0 
1  1  1    1 

F = A’BC’+A’BC+AB’C+ABC 
   = A’B(C’+C)+AC(B’+B) 
   = A’B+AC 

1 

2 

3 

4 
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conserve 
"bubbles" 

conserve 
"bubbles" 

NOR 

NOR 

NOR 

\A 

\B 

\C 

\D 

Z 

NOR 

NOR A 

B 

C 

D 

Z 

Conversion between gate types 

  Example: map AND/OR network to NOR-only network 
A 

B 

C 

D 

Z 
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Z = {  [ (A’ + B’)’ + (C’ + D’)’  ]’  }’ 

   = {     (A’ + B’)  •  (C’ + D’)      }’ 

   =       (A’ + B’)’ + (C’ + D’)’ 

   =       (A  •  B)  +  (C  •  D) 

Conversion between gate types (cont’d) 

  Example: verify equivalence of two forms 

A 

B 

C 

D 

Z 

NOR 

NOR 

NOR 

\A 

\B 

\C 

\D 

Z 
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Activity: convert to NAND gates 
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X1  X2  X3  T2  T1 

0  0  0  0  0    

0  0  1  0  1 

0  1  0  0  1   

0  1  1  1  0   

1  0  0  0  1 

1  0  1  1  0   

1  1  0  1  0 

1  1  1  1  1   

Example: tally circuit (outputs # of 1s in inputs) 

T1  =  X1’ X2’ X3 + X1’ X2 X3’ 
       + X1 X2’ X3’ + X1 X2 X3 

 = (X1’ X2’ + X1 X2) X3 
  + (X1’ X2 + X1 X2’) X3’ 
 = (X1 xor X2)’ X3 
  + (X1 xor X2) X3’ 
 = (X1 xor X2) xor X3 

T2  =  X1’ X2 X3 + X1 X2’ X3 
  + X1 X2 X3’ + X1 X2 X3 

 = X1’ (X2 X3) + X1 (X2 + X3) 
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use of 3-input gate 

From Boolean expressions to logic gates 

  More than one way to map expressions to gates 

  e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D))) 
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time 

change in Y takes time to "propagate" through gates 

Waveform view of logic functions 

  Just a sideways truth table 
  but note how edges don’t line up exactly 
  it takes time for a gate to switch its output! 
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A  B  C  Z 
0  0  0  0 
0  0  1  1 
0  1  0  0 
0  1  1  1 
1  0  0  0 
1  0  1  1 
1  1  0  1 
1  1  1  0 

Choosing different realizations of a function 

two-level realization 
(we don’t count NOT gates) 

XOR gate (easier to draw  
but costlier to build) 

multi-level realization 
(gates with fewer inputs) 
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Are all realizations equivalent? 

  Under the same input stimuli, the three alternative 
implementations have almost the same waveform behavior 
  delays are different 
  glitches (hazards) may arise – these could be bad, it depends 
  variations due to differences in number of gate levels and structure 

  The three implementations are functionally equivalent 
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Which realization is best? 

  Reduce number of inputs 
  literal: input variable (complemented or not) 

  can approximate cost of logic gate as 2 transistors per literal 
  why not count inverters? 

  fewer literals means less transistors 
  smaller circuits 

  fewer inputs implies faster gates 
  gates are smaller and thus also faster 

  fan-ins (# of gate inputs) are limited in some technologies 
  the programmable logic we’ll be using later in the quarter 

  Reduce number of gates 
  fewer gates (and the packages they come in) means smaller circuits 

  directly influences manufacturing costs 
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Which realization is best?  (cont’d) 

  Reduce number of levels of gates 
  fewer level of gates implies reduced signal propagation delays 
  minimum delay configuration typically requires more gates 

  wider, less deep circuits 

  Hazards/glitches 
  one without hazards may be preferable/necessary 

  How do we explore tradeoffs between increased circuit delay 
and size? 
  automated tools to generate different solutions 
  logic minimization: reduce number of gates and complexity 
  logic optimization: reduction while trading off against delay 
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Random logic gates 

  Transistors quickly integrated into logic gates (1960s) 
  Catalog of common gates (1970s) 

  Texas Instruments Logic Data Book – the yellow “bible” 
  all common packages listed and characterized (delays, power) 
  typical packages:  

  in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates 

  Today, very few of these parts are still in use 
  However, parts libraries exist for chip design 

  designers reuse already characterized logic gates on chips 
  same reasons as before 
  difference is that the parts don’t exist in physical inventory – 

created as needed 

Some logic gate components 
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Quad 2-input NANDs – ‘00 Quad 2-input NORs – ‘02 

6 inverters (NOTs) – ‘04 3 3-input NANDs – ‘10 


