Working with Combinational Logic

Simplification

o two-level simplification

o exploiting don’t cares

o algorithm for simplification
Logic realization

o two-level logic and canonical forms realized with NANDs and NORs

o multi-level logic, converting between ANDs and ORs

Spring 2010 CSE370 - VI - Logic Minimization

Design example: 2x2-bit multiplier

A2 A1 B2 Bl |P8 P4 P2 P1

0 0O0O0(|0 O 0 O

010 0 0 O

10 (0 0 O O

11]0 0 0 0

Al R B B
A2 P2 1000 0 1 0
Bl P4 1 1 0 0 1 1
100 0|0 O O O

B2 P8 010 0 1 O
1 0 (0 1 0 O

1 1 /0 1 1 0

I 10 070 0 0 O

block diagram o010 0 1 1

and 10 (0 1 1 O

truth table 1 1]1 0 0 1

4-variable K-map
for each of the 4
output functions

Spring 2010 CSE370 - VI - Logic Minimization

Design example: 2x2-bit multiplier (activity)

A2 A2
- K-map T1or F4
ol ol ol o |KmapforP8 K-map for P4 ololol o
o|loflo]o o|l oo o
B1 B1
olo|1]|o0 ol o0o|o0]| 1
B2, B2
olo|lo|oO o|lo0o|1]1
1 1
A2 A2
ololol o K-map for P2 K-map for P1 ol ol ol o
o of 1] 1 o 1] 1]o0
B1 B1
o 1]0]1 ol 1|10
B2 B2
ol 1]1]o0 o|lo]o]|o
1 1
Spring 2010 CSE370 - VI - Logic Minimization 3

Definition of terms for two-level simplification

Implicant

o single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

Prime implicant
o implicant that can't be combined with another to form a larger subcube
Essential prime implicant
o prime implicant is essential if it alone covers an element of ON-set
o will participate in ALL possible covers of the ON-set
o DC-set used to form prime implicants but not to make implicant essential
Objective:
o grow implicant into prime implicants
(minimize literals per term)

o cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

Spring 2010 CSE370 - VI - Logic Minimization 4

Examples to illustrate terms

A
o I(x T o 6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD
T] \1] | o 5 /) ' \ ; AB,
T essential
1ff o ff1]| 1
Ml o 5[]
o| o |l1]]1 l minimum cover: AC + BC' + A'B'D
A
5 prime implicants: of o010
BD, ABC', ACD, A'BC, A'C'D —_
ClA@ e |,
essential c 0 (1 [1 _1]
minimum cover: 4 essential implicants opLLjojo
Spring 2010 CSE370 - VI - Logic Minimization 5

Algorithm for two-level simplification

Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set

Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

[m]

[m]

o Repeat Steps 1 and 2 to find all prime implicants

o Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s

O

Spring 2010 CSE370 - VI - Logic Minimization 6

Algorithm for two-level simplification (example)

A A
X 1 0 1 0 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
C C
0 1 0 1 0 \L 0 1

A A
x 1) o |[1] x [1] o 1
0 1 1 1 0 1 1 1
1 {ERIEY) &S D

0 Q X | 0 0 XI|[X | 0 0 XI|f X | 0
C i C C

0 1 0 1 0 1 0 1 0 1 0 1

3 primes around AB'C'D’ 2 essential primes minimum cover (3 primes)

Spring 2010 CSE370 - VI - Logic Minimization 7
Activity

m List all prime implicants for the following K-map:
A

= Which are essential prime implicants?

= What is the minimum cover?

Spring 2010 CSE370 - VI - Logic Minimization

Implementations of two-level logic

= Sum-of-products
o AND gates to form product terms (minterms)

o OR gate to form sum 3_ B

= Product-of-sums)
o OR gates to form sum terms (maxterms)
o AND gates to form product 'D

Spring 2010 CSE370 - VI - Logic Minimization 10

Two-level logic using NAND gates (cont’d)

= OR gate with inverted inputs is a NAND gate
o de Morgan’s: A +B =(A-B)
= Two-level NAND-NAND network
d

o inverted inputs are not counted
o in a typical circuit, inversion is done once and signal distribute

Spring 2010 CSE370 - VI - Logic Minimization 11

Two-level logic using NOR gates (cont’d)

AND gate with inverted inputs is a NOR gate
o de Morgan’s: A +B =(A+B)
Two-level NOR-NOR network

o inverted inputs are not counted

o in a typical circuit, inversion is done once and signal distributed

‘] > Dl
- > S o

Spring 2010 CSE370 - VI - Logic Minimization 12

Multi-level logic

x=ADF + AEF + BDF + BEF + CDF + CEF + G
o reduced sum-of-products form — already simplified

o 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even
exist!)

o 25 wires (19 literals plus 6 internal wires)
x=(A+B+C)(D+E)F + G

o factored form — not written as two-level S-o0-P

o 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
o 10 wires (7 literals plus 3 internal wires)

= o

Om mog

Spring 2010 CSE370 - VI - Logic Minimization 13

Conversion of multi-level logic to NAND gates

F=AB+CD)+BC
original

AND-OR
network

introduction and
conservation of
bubbles

redrawn in terms
of conventional
NAND gates

Spring 2010

Level 1

1 >

lvle]
L

Level 2

>

Fﬂbw

Level 3

‘HD

Level 4

_— F

Y

&

1

i

0—

H >

=y lw]
px > m YO0

o

Ay R DS

1>

CSE370 - VI - Logic Minimization

Conversion of multi-level logic to NORs

F=A(B+CD)+BC

Level 1 Level 2

Level 3

C
D]
original
AND-OR B
network A
B]
\C

C
introduction and D 01

Level 4

conservation of

bubbles A o
B 01
\C o

\CH
\D4
redrawn in terms B
of conventional \A
NOR gates
\B
C

Spring 2010

:D_.
1 D
-
kD
T

CSE370 - VI - Logic Minimization

Summary for multi-level logic

Advantages

o circuits may be smaller

o gates have smaller fan-in

o circuits may be faster

Disadvantages

o more difficult to design

o tools for optimization are not as good as for two-level
o analysis is more complex

Spring 2010 CSE370 - VI - Logic Minimization

16

