Working with Combinational Logic

Simplification

o two-level simplification

o exploiting don’t cares

o algorithm for simplification
Logic realization

o two-level logic and canonical forms realized with NANDs and NORs

o multi-level logic, converting between ANDs and ORs

Spring 2010 CSE370 - VI - Logic Minimization

Design example: 2x2-bit multiplier
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Design example: 2x2-bit multiplier (activity)
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Definition of terms for two-level simplification

Implicant

o single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

Prime implicant
o implicant that can't be combined with another to form a larger subcube
Essential prime implicant
o prime implicant is essential if it alone covers an element of ON-set
o will participate in ALL possible covers of the ON-set
o DC-set used to form prime implicants but not to make implicant essential
Objective:
o grow implicant into prime implicants
(minimize literals per term)

o cover the ON-set with as few prime implicants as possible
(minimize number of product terms)
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Examples to illustrate terms
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Algorithm for two-level simplification

Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set

Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

[m]

[m]

o Repeat Steps 1 and 2 to find all prime implicants

o Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s

O

Spring 2010 CSE370 - VI - Logic Minimization 6




Algorithm for two-level simplification (example)

A A
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3 primes around AB'C'D’ 2 essential primes minimum cover (3 primes)
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Activity

m List all prime implicants for the following K-map:
A

= Which are essential prime implicants?

= What is the minimum cover?
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Implementations of two-level logic

= Sum-of-products
o AND gates to form product terms (minterms)

o OR gate to form sum 3_ B

= Product-of-sums )
o OR gates to form sum terms (maxterms)
o AND gates to form product 'D
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Two-level logic using NAND gates (cont’d)

= OR gate with inverted inputs is a NAND gate
o de Morgan’s: A +B =(A-B)
= Two-level NAND-NAND network
d

o inverted inputs are not counted
o in a typical circuit, inversion is done once and signal distribute
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Two-level logic using NOR gates (cont’d)

AND gate with inverted inputs is a NOR gate
o de Morgan’s: A +B =(A+B)
Two-level NOR-NOR network

o inverted inputs are not counted

o in a typical circuit, inversion is done once and signal distributed
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Multi-level logic

x=ADF + AEF + BDF + BEF + CDF + CEF + G
o reduced sum-of-products form — already simplified

o 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even
exist!)

o 25 wires (19 literals plus 6 internal wires)
x=(A+B+C)(D+E)F + G

o factored form — not written as two-level S-o0-P

o 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
o 10 wires (7 literals plus 3 internal wires)

= o

Om mog
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Conversion of multi-level logic to NAND gates

F=AB+CD)+BC
original

AND-OR
network

introduction and
conservation of
bubbles

redrawn in terms
of conventional
NAND gates
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Conversion of multi-level logic to NORs

F=A(B+CD)+BC
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Summary for multi-level logic

Advantages

o circuits may be smaller

o gates have smaller fan-in

o circuits may be faster

Disadvantages

o more difficult to design

o tools for optimization are not as good as for two-level
o analysis is more complex
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