
Sequential Logic

  Sequential circuits
  simple circuits with feedback
  latches
  edge-triggered flip-flops

  Timing methodologies
  cascading flip-flops for proper operation
  clock skew

  Basic registers
  shift registers
  simple counters

  Hardware description languages and sequential logic

Spring 2010 CSE370 - XII - Sequential Logic 1

Sequential versus combinational

B

A C

clock

Apply fixed inputs A, B
Wait for clock edge and then observe C

Wait for another clock edge and observe C again

Combinational: C will always be the same
Sequential: C may change

Why a clock signal? What is a clock signal?

Spring 2010 2 CSE370 - XII - Sequential Logic

Sequential logic: circuits with feedback

  Why feedback?
  How else do you remember something?
  But what stops values from cycling around endlessly?

Spring 2010 CSE370 - XII - Sequential Logic 3

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•
Zn

Simplest circuits with feedback

  Two inverters form a static memory cell
  will hold value as long as it has power applied

  How to get a new value into the memory cell?
  selectively break feedback path
  load new value into cell

Spring 2010 CSE370 - XII - Sequential Logic 4

"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

Memory with cross-coupled gates

  Set-Reset register – no clock
  Cross-coupled NOR gates

  similar to inverter pair, with capability to force output to 0 (reset=1)
or 1 (set=1)

  Cross-coupled NAND gates
  similar to inverter pair, with capability to force output to 0 (reset=0)

or 1 (set=0)

Spring 2010 CSE370 - XII - Sequential Logic 5

R

S

Q

Q'

R
S

Q

R'
S'

Q
Q

Q'

S'

R'

Timing behavior

Spring 2010 CSE370 - XII - Sequential Logic 6

Reset Hold Set Set Reset Race

R

S

Q

\Q

100

R

S

Q

Q'

Clocked Edge-Triggered D-FF

  Basic storage element – sample and hold
  Samples D on rising clock edge
  Outputs this value on Q until the next sample

  We won’t worry about how the D flip-flop is implemented
  Lots of ways, mostly magic these days

Spring 2010 CSE370 - XII - Sequential Logic 7

D Q

Edge-triggered flip-flops (cont’d)

  Positive edge-triggered
  inputs sampled on rising edge; outputs change after rising edge

  Negative edge-triggered flip-flops
  inputs sampled on falling edge; outputs change after falling edge

Spring 2010 CSE370 - XII - Sequential Logic 8

positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos’
Qneg
Qneg’

100

Timing methodologies

  Rules for interconnecting components and clocks
  guarantee proper operation of system when strictly followed

  Approach depends on building blocks used for memory elements
  we'll focus on systems with edge-triggered flip-flops

  found in programmable logic devices such as our FPGA
  many custom integrated circuits focus on level-sensitive latches

  smaller, faster a bit more complicated to work with (CSE467)

  Basic rules for correct timing:
  (1) correct inputs, with respect to clock, are provided to the flip-flops
  (2) no flip-flop changes state more than once per clocking event

Spring 2010 CSE370 - XII - Sequential Logic 9

Timing methodologies (cont’d)

  Definition of terms
  Clock: periodic event, causes state of memory element to change

 can be rising edge or falling edge (or high level or low level)
  Setup time: minimum time before the clocking event by which the

 input must be stable (Tsetup or Tsu)
  Hold time: minimum time after the clocking event until which the

 input must remain stable (Thold or Th)

Spring 2010 CSE370 - XII - Sequential Logic 10

there is a timing "window"
around the clocking event

during which the input must
remain stable and unchanged

in order to be recognized
clock

data
changing stable

input

clock

Tsu Th

clock

data
D Q D Q

Typical timing specifications

  Positive edge-triggered D flip-flop
  setup and hold times
  minimum clock width
  propagation delays (low to high, high to low, max and typical)

Spring 2010 CSE370 - XII - Sequential Logic 11

all measurements are made from the clocking event (the rising edge of the clock)

D

Clk

Q

T su
180
ps

T h
50
ps

T pdlh
360 ps

T su
180
ps

T h
50
ps

T pdhl
110 ps

T
C 5.0 ns

Cascading edge-triggered flip-flops

  All registers sample at exactly the same time
  Shift register

  new value goes into first stage
  while previous value of first stage goes into second stage

Spring 2010 CSE370 - XII - Sequential Logic 12

IN

Q0

Q1

CLK

100
CLK

IN
Q0 Q1

D Q D Q OUT

Cascading edge-triggered flip-flops (cont’d)

  Long path constraint
  Tsu + Tp <= Tc

Spring 2010 CSE370 - XII - Sequential Logic 13

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Tsu
180ps

Tp
110-360ps

In

Q0

Q1

CLK

Tc

Cascading edge-triggered flip-flops (cont’d)

  Short path constraint
  Tp > Th
  propagation delays exceed hold times
  this guarantees following stage will latch current value before it

changes to new value

Spring 2010 CSE370 - XII - Sequential Logic 14

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Tp
110-360ps

Th
50ps

In

Q0

Q1

CLK

Th
50ps

Tp
110-360ps

Cascading edge-triggered flip-flops (cont’d)

  Why this works
  propagation delays exceed hold times
  this guarantees following stage will latch current value before it

changes to new value

Spring 2010 CSE370 - XII - Sequential Logic 15

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Tsu
180ps

Tp
110-360ps

Th
50ps

In

Q0

Q1

CLK

Th
50ps

Tsu
180ps

Tp
110-360ps

Clock skew

  When it doesn’t work
  correct behavior assumes next state of all storage elements

determined by all storage elements at the same time
  this is difficult in high-performance systems because time for clock

to arrive at flip-flop is comparable to delays through logic
  effect of skew on cascaded flip-flops:

Spring 2010 CSE370 - XII - Sequential Logic 16

original state: IN = 0, Q0 = 1, Q1 = 1 expected next state: Q0 = 0, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0 (0 races through two FFs instead of one)

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Shift register

  Holds samples of input
  store last 4 input values in sequence
  4-bit shift register:

Spring 2010 CSE370 - XII - Sequential Logic 17

D Q D Q D Q D Q IN

OUT1 OUT2 OUT3 OUT4

CLK

Pattern recognizer

  Combinational function of input samples
  in this case, recognizing the pattern 1001 on the single input

signal

Spring 2010 CSE370 - XII - Sequential Logic 18

D Q D Q D Q D Q IN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Multi-Bit Registers

  Collection of 1-bit registers that share the same clock and
controls
  store a binary value
  share clock, reset, and set lines

Spring 2010 CSE370 - XII - Sequential Logic 19

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

Register Control

  Reset
  Clear the register to 0
  Synchronous – happens on clock edge
  Asynchronous – happens immediately

  Dangerous

  Set
  Set the register to 1
  Synchronous or Asynchronous

  Enable
  Register samples input only if enable = 1
  aka “load”

Spring 2010 CSE370 - XII - Sequential Logic 20

Simple “Counter”

  Sequences through a fixed set of patterns
  in this case, 1000, 0100, 0010, 0001
  if one of the patterns is its initial state (by loading or set/reset)

Spring 2010 CSE370 - XII - Sequential Logic 21

D Q D Q D Q D Q IN

OUT1 OUT2 OUT3 OUT4

CLK

Activity

  How does this counter work (assuming it starts in state 0000)?

  Counts through the sequence:
  1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

  Known as Mobius (or Johnson) counter

Spring 2010 CSE370 - XII - Sequential Logic 22

D Q D Q D Q D Q IN

OUT1 OUT2 OUT3 OUT4

CLK

Binary counter

  Logic between registers (not just multiplexer)
  XOR decides when bit should be toggled
  always for low-order bit,

only when first bit is true for second bit,
and so on

Spring 2010 CSE370 - XII - Sequential Logic 23

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

How fast is our counter?

  Tc > Tp + TpCL + Tsu

  Frequency < 1/Tc

Spring 2010 CSE370 - XII - Sequential Logic 24

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

Counter Controls

  Reset – return counter to 0
  Usually Synchronous

  Load – start counter at a given value
  Enable – counter counts only when enable = 1
  Up/Down – count up when 1, count down when 0
  etc.
  How do you design these?

Spring 2010 CSE370 - XII - Sequential Logic 25

General Synchronous Design

  Combinational logic for the “next value” function
  Can be a function of inputs, register value or both

Spring 2010 CSE370 - XII - Sequential Logic 26

inputs outputs

reg

Combinational
Logic

Example: Versatile Shift Register

  Clear
  Load – parallel input
  Shift Left – serial input/output
  Shift Right – serial input/output
  Parallel output

Spring 2010 CSE370 - XII - Sequential Logic 27

Shift register application

  Parallel-to-serial conversion for serial transmission

Spring 2010 CSE370 - XII - Sequential Logic 28

parallel inputs

parallel outputs

serial transmission

