Finite State Machines

- Finite State Machines (FSMs)
- general models for representing sequential circuits
- two principal types based on output behavior (Moore and Mealy)
- Basic sequential circuits revisited and cast as FSMs
- shift registers
- counters
- Design procedure for FSMs
- state diagrams
- state transition table
- next state functions
- potential optimizations
- Hardware description languages

Finite state machine

- A set of States - the FSM is in one state at any time
- Inputs - inputs used by the FSM
- Next state function - Determines how the FSM moves from one state to another based on the state and the inputs
- Output function - Compute the output based on current state (and possibly the inputs)
- The FSM transitions from one state to another as determined by the next state function function

Example finite state machine diagram

- 5 states
- 8 other transitions between states
- 6 conditioned by input
- 1 self-transition (on 0 from 001 to 001)
- 2 independent of input (to/from 111)
- 1 reset transition (from all states) to state 100
- represents 5 transitions (from each state to 100), one a self-arc
- simplifies condition on other transitions -all would include AND reset')
- short-hand - rather than drawing a transition arc from each state

State diagrams

- Like a program
- Start in some state
- For each state:
- For all possible input combinations
- Determine what the next state should be
- Determine what the output should be
- States are used to remember what happened in the past
- Typically, being in a state means something, e.g
- We've seen an even number of 1's
- Button A has been pressed
- We are waiting until the input goes back low
- We've counted up to 5

Counters are simple finite state machines

- Counters
- proceed through well-defined sequence of states
- Many types of counters: binary, BCD, Gray-code, etc....
- 3-bit up-counter: 000, 001, $010,011,100,101,110,111,000, \ldots$
- 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

- Counter
- 3 flip-flops to hold state
- clock signal controls when flip-flop memory changes
- move to next state with clock ticks
- wait long enough for combinational logic to compute new value
- Logic to compute next state - just an increment function
- Logic to compute output
- Just the flip-flop outputs here

Any sequential system be represented with a state diagram

- Shift register
- input value shown on transition arcs
- output values shown within state node

General Finite State Machine Implementation

- The state register holds the current state of the machine
- Similar to a program counter
- Different value for each state
- The state machine logic computes:
- The next state function - where the FSM should transition next
- The output function
- Function of the current state (Moore)
- Function of the current state and the inputs (Mealy)

FSM design procedure

- Draw the state diagram in all its glory (creative design)
- List all inputs
- List all outputs
- Draw all the states
- Draw all possible transitions from each state
- One for each input combination
- Use don't cares to reduce number
- Decide how each state should be represented using state bits - Choice may determine cost/speed of FSM implementation
- Convert state diagram to a state transition table (turn crank)
- Truth table representation of state diagram
- Truth table has next state function and output function
- Implement next state function and output function (old hat)

Example FSM design procedure - 8-bit counter

- 8 states - 3 state bits
- Use state to represent count (could use any encoding)
- Output function is trivial
- State table has an entry for (states x inputs)
- No inputs here, just states
- Table output gives next state and output values

current state		next state	
0	000	001	1
1	001	010	2
2	010	011	3
3	011	100	4
4	100	101	5
5	101	110	6
6	110	111	7
7	111	000	0

3-bit Counter Implementation

Spring 2010

Back to the shift register

- Input determines next state

In	C 1	C 2	C 3	N 1	N 2	N 3
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	1
1	0	1	1	1	0	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

N1 <= In
N2 <= C1
N3 <= C2

More complex counter example

- Complex counter
- repeats 5 states in sequence
- not a binary number representation
- Step 1: derive the state transition diagram
- count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Present State					Next State		
C	B	A	C+ +		B+		
0	0	A+					
0	0	1	-	1	0		
0	1	0	0	1	-		
0	1	1	1	0	1		
1	0	0	-	-	-		
1	0	1	1	1	0		
1	1	0	0	0	0		
1	1	1	-	-	-		

note the don't care conditions that arise from the unused state codes

More complex counter example (cont'd)

- Step 3: K-maps for next state functions

$$
\begin{aligned}
& \mathrm{C}+<=\mathrm{A} \\
& \mathrm{~B}+<=\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \\
& \mathrm{A}+<=\mathrm{BC}^{\prime}
\end{aligned}
$$

Self-starting counters (cont'd)

- Re-deriving state transition table from don't care assignment

Self-starting counters

- Start-up states

- at power-up, counter may be in an unused or invalid state
- designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
- design counter so that invalid states eventually transition to a valid state
- this may or may not be acceptable
- may limit exploitation of don't cares
- Or just use reset

Activity

- 2 inputs (A and B) and 1 output (+ reset)
- If A turns on first, and then B: Turn on output (until reset)
- If B turns on before A: Keep output off (until reset)
- Note that the output is a function of the state only (Moore)

State Assignment

(Arbitrary - different
encoding yields
different circuits)

Activity

- Convert state diagram to a State Table

State Table

S1	S0	A	B	N1	NO	Out
0	0	0	0	0	0	0
0	0	0	1	1	1	0
0	0	1	0	0	1	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	-	-	1	0	1
1	1	-	-	1	1	0

Activity

- Implement next state and output functions

State Table

S1	S0	A	B	N1	N0		Out									
0	0	0	0	0	0	0	0		$\mathrm{N} 1<=\mathrm{S} 1+\mathrm{B}$							
0	0	0	1	1	1	0	0									
0	0	1	0	0	1		0									
0	0	1	1	1	1	0	0						S1'S0'B + S1'S0A'			
0	1	0	0	0	1		0		N0 <= S1S0 +							
0	1	0	1	1	0	0	0		Out = S1S0'							
0	1	1	0	0	1	0	0									
0	1	1	1	1	0	0	0									
1	0	-	-	1	0	1	1									
1	1	-	-		1		0									
				S1							S1					
		. 0	${ }_{4} 0$	${ }_{22} 1{ }_{8}$	${ }_{8} 1$						${ }_{42} 1{ }_{8} 0$		${ }_{0} 0$	${ }_{4} 0$	${ }_{2} 0$	${ }_{3} 1$
		1	${ }_{5} 1$	${ }_{43} 1$	${ }_{9} 1$			1	0	${ }_{5} 0$	${ }_{43} 1$		0	0	130	${ }_{1} 1$
		1	7	${ }_{5} 1$	11			1		0	${ }_{55}$ 0 11		0	0	${ }_{15} 0$	1
	A	2	0	1	1		A	0		1	$1{ }^{1} 10$	A	0	0	19	1

Edge Detector

- Implement an edge detector
- Sample an input
- Output a 1 when either the transition $0->1$, or $1->0$ is detected

Note: Output value is associated with the state. This is a Moore machine.

State assignment has not been done. Symbolic values (A, B, C, D, E) have been used instead.

Edge Detector

- State Table using symbolic states
- Next step: state assignment
- How many inputs do the next state and output functions have?
- i.e. How large are the K-maps?

Edge Detector

- This is a Moore FSM
- The output is 1 if the FSM is in state D or E
- We can do state assignment so that one state bit is 1 only in state D and E
- e.g. $A=000, B=001, C=010, D=100, E=101$

Edge Detector: Implications of Moore Machine

Note that the output lags the input by a clock cycle State register is between input and output

Mealy machine

- Output is a function of both the current state and inputs
- specify output on transition arc between states
- Detector example
- Note only 3 states are needed

		current reset	next input statate	output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	B	0
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Mealy machine

- State assignment:
- $A=00, B=01, C=10$

$$
\begin{equation*}
\mathrm{N} 1=\text { in } \tag{1}
\end{equation*}
$$

in

reset	input	current state	next state	output
1	-	-	00	0
0	0	00	01	0
0	1	00	10	0
0	0	01	01	0
0	1	01	10	1
0	0	10	01	1
0	1	10	10	0

in

$\mathrm{NO}=$ in'

out $=$ S1in' + SOin

Edge Detector - Implications of Mealy Machine

Note that the output changes as soon as the input changes. But glitches on input get passed along! Output reacts faster, but may add delay to critical path.

General state machine model revisited

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
- next state
- function of current state and inputs
- outputs
- function of current state and inputs (Mealy machine)
- function of current state only (Moore machine)

State machine model (cont'd)

- States: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$
- Inputs: $I_{1}, I_{2}, \ldots, I_{m}$
- Outputs: $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{n}}$
- Transition function: $\mathrm{F}_{\mathrm{s}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{l}_{\mathrm{j}}\right)$
- Output function: $\mathrm{F}_{0}\left(\mathrm{~S}_{\mathrm{i}}\right)$ or $\mathrm{F}_{0}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{l}_{\mathrm{j}}\right)$

Comparison of Mealy and Moore machines (cont'd)

- Moore

- Mealy

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
- outputs depend on arc taken from a state to another state (n^{2}) rather than just the state of the FSM (n)
- Moore machines are safer to use
- outputs change at next clock edge
- in Mealy machines, input change can cause async output change (after prop delay of logic) - a BIG problem when two machines are interconnected - asynchronous feedback may occur if one isn't careful (input to fsm1, changes output of fsm1, which is an input to fsm2, whose output changes, and turns out to be input to fsm1)
- Mealy machines advantage? - they react faster to inputs
- react in same cycle - don't need to wait for clock
- in Moore machines, more logic may be necessary to decode state into outputs that are needed - more gate delays after clock edge

