
Spring 2010 CSE370 - XIV - Finite State Machines I 1

Finite State Machines

  Finite State Machines (FSMs)
  general models for representing sequential circuits
  two principal types based on output behavior (Moore and Mealy)

  Basic sequential circuits revisited and cast as FSMs
  shift registers
  counters

  Design procedure for FSMs
  state diagrams
  state transition table
  next state functions
  potential optimizations

  Hardware description languages

Finite state machine
  A set of States – the FSM is in one state at any time
  Inputs – inputs used by the FSM
  Next state function – Determines how the FSM moves from one

state to another based on the state and the inputs
  Output function – Compute the output based on current state

(and possibly the inputs)
  The FSM transitions from one state to another as determined by

the next state function function

Spring 2010 CSE370 - XIV - Finite State Machines I 2

In = 0

In = 1

In = 0 In = 1

100

010

110

111 001
In = 1

In = 0

In = X

In = X
010 001

1

0

Spring 2010 CSE370 - XIV - Finite State Machines I 3

Example finite state machine diagram

  5 states
  8 other transitions between states

  6 conditioned by input
  1 self-transition (on 0 from 001 to 001)
  2 independent of input (to/from 111)

  1 reset transition (from all states) to state 100
  represents 5 transitions (from each state to 100), one a self-arc
  simplifies condition on other transitions –all would include AND reset’)
  short-hand – rather than drawing a transition arc from each state

0

1

0 1

100

010

110

111 001
1

0

reset

Spring 2010 CSE370 - XIV - Finite State Machines I 4

State diagrams

  Like a program
  Start in some state
  For each state:

  For all possible input combinations
  Determine what the next state should be
  Determine what the output should be

  States are used to remember what happened in the past
  Typically, being in a state means something, e.g.

  We’ve seen an even number of 1’s
  Button A has been pressed
  We are waiting until the input goes back low
  We’ve counted up to 5

Spring 2010 CSE370 - XIV - Finite State Machines I 5

010

100

110

011 001

000

101 111

3-bit up-counter

Counters are simple finite state machines

  Counters
  proceed through well-defined sequence of states

  Many types of counters: binary, BCD, Gray-code, etc….
  3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
  3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

  Counter
  3 flip-flops to hold state

  clock signal controls when flip-flop memory changes
  move to next state with clock ticks
  wait long enough for combinational logic to compute new value

  Logic to compute next state – just an increment function
  Logic to compute output

  Just the flip-flop outputs here

Spring 2010 CSE370 - XIV - Finite State Machines I 6

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

010

100

110

011 001

000

101 111

Spring 2010 CSE370 - XIV - Finite State Machines I 7

Any sequential system be represented with a
state diagram

  Shift register
  input value shown

on transition arcs
  output values shown

within state node

100 110

111

011

101 010 000

001

1

1
1 0 1

1

1

1

0 0
0 1

0

0

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

General Finite State Machine Implementation
  The state register holds the current state of the machine

  Similar to a program counter
  Different value for each state

  The state machine logic computes:
  The next state function – where the FSM should transition next
  The output function

  Function of the current state (Moore)
  Function of the current state and the inputs (Mealy)

Spring 2010 CSE370 - XIV - Finite State Machines I 8

FSM design procedure

  Draw the state diagram in all its glory (creative design)
  List all inputs
  List all outputs
  Draw all the states
  Draw all possible transitions from each state

  One for each input combination
  Use don’t cares to reduce number

  Decide how each state should be represented using state bits
  Choice may determine cost/speed of FSM implementation

  Convert state diagram to a state transition table (turn crank)
  Truth table representation of state diagram
  Truth table has next state function and output function

  Implement next state function and output function (old hat)

Spring 2010 CSE370 - XIV - Finite State Machines I 9

Example FSM design procedure – 8-bit counter

  8 states – 3 state bits
  Use state to represent count (could use any encoding)
  Output function is trivial

  State table has an entry for (states x inputs)
  No inputs here, just states
  Table output gives next state and

output values

Spring 2010 CSE370 - XIV - Finite State Machines I 10

010

100

110

011 001

000

101 111

3-bit up-counter

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

Spring 2010 CSE370 - XIV - Finite State Machines I 11

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

N1 <= C1’
 <= C1 xor 1

N2 <= C1C2’ + C1’C2
 <= C1 xor C2

N3 <= C1C2C3’ + C1’C3 + C2’C3
 <= (C1C2)C3’ + (C1’ + C2’)C3
 <= (C1C2)C3’ + (C1C2)’C3
 <= (C1C2) xor C3

Verilog notation to show
function represents an
input to D-FF

3-bit Counter Implementation

  D flip-flop for each state bit
  Combinational logic based on state encoding

0 0

0 1

1 1

0 1 C1

C2

C3 N3

0 1

1 0

1 0

0 1 C1

C2

C3 N2

1 1

0 0

1 1

0 0 C1

C2

C3 N1

Back to the shift register

  Input determines next state

Spring 2010 CSE370 - XIV - Finite State Machines I 12

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 <= In
N2 <= C1
N3 <= C2

100 110

111

011

101 010 000

001

0

1

1 1

1 1

1

1

0

0

0

0 0

1

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

More complex counter example
  Complex counter

  repeats 5 states in sequence
  not a binary number representation

  Step 1: derive the state transition diagram
  count sequence: 000, 010, 011, 101, 110

  Step 2: derive the state transition table from the state transition
diagram

Spring 2010 CSE370 - XIV - Finite State Machines I 13

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

Spring 2010 CSE370 - XIV - Finite State Machines I 14

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter example (cont’d)

  Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1 A

B

C C+

1 1

X 0

0 X

X 1 A

B

C B+

0 1

X 1

0 X

X 0 A

B

C A+

Spring 2010 CSE370 - XIV - Finite State Machines I 15

Self-starting counters (cont’d)

  Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1 A

B

C C+

1 1

1 0

0 1

0 1 A

B

C B+

0 1

0 1

0 0

0 0 A

B

C A+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001 111

100

Self-starting counters
  Start-up states

  at power-up, counter may be in an unused or invalid state
  designer must guarantee that it (eventually) enters a valid state

  Self-starting solution
  design counter so that invalid states eventually transition to a valid state

  this may or may not be acceptable
  may limit exploitation of don't cares

  Or just use reset

Spring 2010 CSE370 - XIV - Finite State Machines I 16

implementation
on previous slide

010

000 110

101

011

001 111

100

010

000 110

101

011

001 111

100

Spring 2010 CSE370 - XIV - Finite State Machines I 18

Activity

State Assignment

(Arbitrary – different
encoding yields
different circuits)

  2 inputs (A and B) and 1 output (+ reset)
  If A turns on first, and then B: Turn on output (until reset)
  If B turns on before A: Keep output off (until reset)

  Note that the output is a function of the state only (Moore)

Spring 2010 CSE370 - XIV - Finite State Machines I 19

Activity

  Convert state diagram to a State Table

S1 S0 A B N1 N0 Out
0 0 0 0 0 0 0
0 0 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 1 0 0
1 0 - - 1 0 1
1 1 - - 1 1 0

State Table

Spring 2010 CSE370 - XIV - Finite State Machines I 20

Activity

  Implement next state and output functions

S1 S0 A B N1 N0 Out
0 0 0 0 0 0 0
0 0 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 1 0 0
1 0 - - 1 0 1
1 1 - - 1 1 0

State Table

N1 <= S1 + B
N0 <= S1S0 + S1’S0’B + S1’S0A’
Out = S1S0’

Edge Detector
  Implement an edge detector

  Sample an input
  Output a 1 when either the transition 0 -> 1, or 1 -> 0 is detected

Spring 2010 CSE370 - XIV - Finite State Machines I 22

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

Note: Output value is
associated with the state.
This is a Moore machine.

State assignment has not
been done. Symbolic
values (A, B, C, D, E) have
been used instead.

Edge Detector
  State Table using symbolic states
  Next step: state assignment
  How many inputs do the next state and output functions have?

  i.e. How large are the K-maps?

Spring 2010 CSE370 - XIV - Finite State Machines I 23

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

 current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Edge Detector
  This is a Moore FSM

  The output is 1 if the FSM is in state D or E
  We can do state assignment so that one state bit is 1 only in state

D and E
  e.g. A=000, B=001, C=010, D=100, E=101

Spring 2010 CSE370 - XIV - Finite State Machines I 24

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

 current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Edge Detector

  N2 = S0in + S1in’ + S2S0’in’
  N1 = S0’in
  N0 = in’

Spring 2010 CSE370 - XIV - Finite State Machines I 25

 current next
reset input state state output
1 – – 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 1 0 0 1 1 0 0 0
0 0 0 1 0 1 0 1 0
0 1 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 1
0 0 1 0 1 0 0 1 1
0 1 1 0 1 1 0 0 1

Edge Detector: Implications of Moore Machine

Spring 2010 CSE370 - XIV - Finite State Machines I 26

Note that the output lags the input by a clock cycle
State register is between input and output

Spring 2010 CSE370 - XIV - Finite State Machines I 27

 current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Mealy machine
  Output is a function of both the current state and inputs

  specify output on transition arc between states
  Detector example

  Note only 3 states are needed

Spring 2010 CSE370 - XIV - Finite State Machines I 28

 current next
reset input state state output
1 – – 0 0 0
0 0 0 0 0 1 0
0 1 0 0 1 0 0
0 0 0 1 0 1 0
0 1 0 1 1 0 1
0 0 1 0 0 1 1
0 1 1 0 1 0 0

Mealy machine
  State assignment:

  A=00, B=01, C=10
N1 = in

N0 = in’

out = S1in’ + S0in

Edge Detector – Implications of Mealy Machine

Spring 2010 CSE370 - XIV - Finite State Machines I 29

Note that the output changes as soon as the input changes.
But glitches on input get passed along!
Output reacts faster, but may add delay to critical path.

Spring 2010 CSE370 - XIV - Finite State Machines I 30

General state machine model revisited

  Values stored in registers represent the state of the circuit
  Combinational logic computes:

  next state
  function of current state and inputs

  outputs
  function of current state and inputs (Mealy machine)
  function of current state only (Moore machine)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Spring 2010 CSE370 - XIV - Finite State Machines I 31

State machine model (cont’d)

  States: S1, S2, ..., Sk

  Inputs: I1, I2, ..., Im

  Outputs: O1, O2, ..., On

  Transition function: Fs(Si, Ij)
  Output function: Fo(Si) or Fo(Si, Ij)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

Spring 2010 CSE370 - XIV - Finite State Machines I 32

Comparison of Mealy and Moore machines
(cont’d)

  Moore

  Mealy

state feedback

inputs

outputs reg

combinational
logic for

next state logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

state feedback

Spring 2010 CSE370 - XIV - Finite State Machines I 33

Comparison of Mealy and Moore machines

  Mealy machines tend to have less states
  outputs depend on arc taken from a state to another state (n2)

rather than just the state of the FSM (n)
  Moore machines are safer to use

  outputs change at next clock edge
  in Mealy machines, input change can cause async output change

(after prop delay of logic) – a BIG problem when two machines are
interconnected – asynchronous feedback may occur if one isn’t
careful (input to fsm1, changes output of fsm1, which is an input to
fsm2, whose output changes, and turns out to be input to fsm1)

  Mealy machines advantage? – they react faster to inputs
  react in same cycle – don't need to wait for clock
  in Moore machines, more logic may be necessary to decode state

into outputs that are needed – more gate delays after clock edge

